This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combin...This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.展开更多
In this paper,the design and experimental results for a novel high-stability sounding electrostatic field micro sensor are presented.By means of hermetic chip sealing,digital weak signal demodulation unit,and probe se...In this paper,the design and experimental results for a novel high-stability sounding electrostatic field micro sensor are presented.By means of hermetic chip sealing,digital weak signal demodulation unit,and probe sensor structure design,harsh environmental adaptation problems such as low temperature,high humidity,low air pressure,waterfall are solved.The sensor has a high resolution of 14 V/m,a wide measurement range of±100 kV/m,and is proved to have superior stability and performance in sounding electric field experiments than traditional sensors under different kinds of weather.展开更多
This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mo...This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA-040405)the National Natural Science Foundation of China(Nos.61101049,61201078,61302032,61327810)
文摘This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA040405)the National Natural Science Foundation of China(No.61201078,No.61302032,No.61327810).
文摘In this paper,the design and experimental results for a novel high-stability sounding electrostatic field micro sensor are presented.By means of hermetic chip sealing,digital weak signal demodulation unit,and probe sensor structure design,harsh environmental adaptation problems such as low temperature,high humidity,low air pressure,waterfall are solved.The sensor has a high resolution of 14 V/m,a wide measurement range of±100 kV/m,and is proved to have superior stability and performance in sounding electric field experiments than traditional sensors under different kinds of weather.
文摘This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.