Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy,...Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
A new hydrotreating technology integrating the ebullated-bed(EB) and the fixed-bed(FB) hydrogenation was proposed to investigate the efficiency for hydrotreating mid- low-temperature coal tar to clean fuel, and multip...A new hydrotreating technology integrating the ebullated-bed(EB) and the fixed-bed(FB) hydrogenation was proposed to investigate the efficiency for hydrotreating mid- low-temperature coal tar to clean fuel, and multiple tests at the bench scale were carried out. The results showed that the distillates obtained from EB reactors were greatly upgraded and could meet the requirements of FB unit without discarding any tail oil. The naphtha produced from FB reactors could be fed to the catalytic reforming unit, while a high quality diesel was also obtained. The unconverted oil(UCO) could be further hydrocracked to clean fuel. It is found that the removal of impurities from the coal tar oil is related with the molecular aggregation structure and composition of the coal tar. Application of the integrated hydrotreating technology to the hightemperature coal tar processing demonstrated that more than half of heavy components could be effectively upgraded.展开更多
Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel L...Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system.展开更多
Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-...Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.展开更多
基金SINOPEC for its financial support(No.108012/No.108041)
文摘Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
基金SINOPEC for its financial support (No. 2011AA05A203)
文摘A new hydrotreating technology integrating the ebullated-bed(EB) and the fixed-bed(FB) hydrogenation was proposed to investigate the efficiency for hydrotreating mid- low-temperature coal tar to clean fuel, and multiple tests at the bench scale were carried out. The results showed that the distillates obtained from EB reactors were greatly upgraded and could meet the requirements of FB unit without discarding any tail oil. The naphtha produced from FB reactors could be fed to the catalytic reforming unit, while a high quality diesel was also obtained. The unconverted oil(UCO) could be further hydrocracked to clean fuel. It is found that the removal of impurities from the coal tar oil is related with the molecular aggregation structure and composition of the coal tar. Application of the integrated hydrotreating technology to the hightemperature coal tar processing demonstrated that more than half of heavy components could be effectively upgraded.
文摘Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system.
基金supported by China Petrochemical Corporation(SINOPEC)(Contact No.106002000284)
文摘Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.