Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be dist...Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.展开更多
Based mainly on TOGA-COARE data, that is, the CTD data from R/V Xiangyanghong No. 5 (Pu et al., 1993), the temperature and current data from the Woods Hole mooring and other deep current data, the layered numerical pr...Based mainly on TOGA-COARE data, that is, the CTD data from R/V Xiangyanghong No. 5 (Pu et al., 1993), the temperature and current data from the Woods Hole mooring and other deep current data, the layered numerical profiles of buoyancy frequency and mean current components are figured out. A numerical method calculating internal wave dispersion relation without background shear current, used by Fliegel and Hunkins (1975), is improved to be fit for the internal wave equation with mean currents and their second derivatives. The dispersion relations and wave functions of the long crested internal wave progressing in any direction can be calculated conveniently by using the improved method. A comparison between the calculated dispersion relation in the paper and the dispersion relation in GM spectral model of ocean internal waves (Garret and Munk, 1972) is performed. It shows that the mean currents are important to the dispersion relation of internal waves in the western equatorial Pacific Ocean and that the currents make the wave progressing co-directional with (against) the currents stretched (shrink). The influence of the mean currents on dispersion relation is much stronger than that of their second derivatives, but that on wave function is less than that of their second derivatives. The influences on wave functions result in the change of vertical wavenumber, that is, making the wave function stretch or shrink. There exists obvious turning depth but no significant critical layer absorption is found.展开更多
By analyzing a data set collected using a moored instrument array and CTD during TOGA-COARE, it is found that there exist remarkable internal tides in the western equatorial Pacific Ocean around 1°45′S, 156°...By analyzing a data set collected using a moored instrument array and CTD during TOGA-COARE, it is found that there exist remarkable internal tides in the western equatorial Pacific Ocean around 1°45′S, 156°E, whose horizontal wavenumber (wavelength), vertical wavenumber, h 156° orizontal propagation speed and vertical propagation speed are 3.3×10^-2 km^-1 (210 km), - 1.6×10^-3m, 2.0 m/s and -3.8 cm/s, respectively, that is, the waveform propagates downwards slantingly. Moreover, the propagating direction rotates statistically clockwise as the depth increases and its cause is unclear.展开更多
By analysing the CTD data in the southernregion of the South China Sea gathered during six cruisesbetween 1989 and 1999, a barrier layer with seasonalvariation just like what exists in the equatorial oceans isfound in...By analysing the CTD data in the southernregion of the South China Sea gathered during six cruisesbetween 1989 and 1999, a barrier layer with seasonalvariation just like what exists in the equatorial oceans isfound in this region. It is the first discovery in such amarginal sea yet. It is strong in autumn and a little weak in summer and winter. The thicker the barrier layer, the higher the average temperature of the upper mixed layer. The region with the thicker barrier layer overlaps the region with thehigher average temperature of the upper mixed layer, andaccords with the thicker region of the warm pool in the South China Sea got from the Levitus data. The barrier layer in the southern region of the South China Sea has significantinfluence on the heat storage of the upper ocean there.展开更多
基金This study is supported by the National Natural Science Foundation of China(Projects under contract Nos.40506007,49676275 and 49976002)the Natural Science Foundation of Shandong Province(No.Y2000E04)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
基金National Natural Science Foundation of China,Project under contract No.49676275,No.49976002 and Research Fund for the Docto
文摘Based mainly on TOGA-COARE data, that is, the CTD data from R/V Xiangyanghong No. 5 (Pu et al., 1993), the temperature and current data from the Woods Hole mooring and other deep current data, the layered numerical profiles of buoyancy frequency and mean current components are figured out. A numerical method calculating internal wave dispersion relation without background shear current, used by Fliegel and Hunkins (1975), is improved to be fit for the internal wave equation with mean currents and their second derivatives. The dispersion relations and wave functions of the long crested internal wave progressing in any direction can be calculated conveniently by using the improved method. A comparison between the calculated dispersion relation in the paper and the dispersion relation in GM spectral model of ocean internal waves (Garret and Munk, 1972) is performed. It shows that the mean currents are important to the dispersion relation of internal waves in the western equatorial Pacific Ocean and that the currents make the wave progressing co-directional with (against) the currents stretched (shrink). The influence of the mean currents on dispersion relation is much stronger than that of their second derivatives, but that on wave function is less than that of their second derivatives. The influences on wave functions result in the change of vertical wavenumber, that is, making the wave function stretch or shrink. There exists obvious turning depth but no significant critical layer absorption is found.
基金supported by the National Natural Science Foundation of China under contract Nos 49676275 and 49976002the Microwave Imaging National Key Laboratory Foundation under contract No.51442020103JW1002.
文摘By analyzing a data set collected using a moored instrument array and CTD during TOGA-COARE, it is found that there exist remarkable internal tides in the western equatorial Pacific Ocean around 1°45′S, 156°E, whose horizontal wavenumber (wavelength), vertical wavenumber, h 156° orizontal propagation speed and vertical propagation speed are 3.3×10^-2 km^-1 (210 km), - 1.6×10^-3m, 2.0 m/s and -3.8 cm/s, respectively, that is, the waveform propagates downwards slantingly. Moreover, the propagating direction rotates statistically clockwise as the depth increases and its cause is unclear.
基金This work was supported by the National Key Science Project (Grant No. 97-926-05-02) the National Natural Science Foundation of China (Grant No. 49976002) the Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 98
文摘By analysing the CTD data in the southernregion of the South China Sea gathered during six cruisesbetween 1989 and 1999, a barrier layer with seasonalvariation just like what exists in the equatorial oceans isfound in this region. It is the first discovery in such amarginal sea yet. It is strong in autumn and a little weak in summer and winter. The thicker the barrier layer, the higher the average temperature of the upper mixed layer. The region with the thicker barrier layer overlaps the region with thehigher average temperature of the upper mixed layer, andaccords with the thicker region of the warm pool in the South China Sea got from the Levitus data. The barrier layer in the southern region of the South China Sea has significantinfluence on the heat storage of the upper ocean there.