期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TRPC6 Knockout Alleviates Renal Fibrosis through PI3K/AKT/GSK3B Pathway
1
作者 An-bang SUN fang-hua li +4 位作者 lin ZHU Xi-xi ZENG Min ZHU Qing-hua LEI Yan-hong liAO 《Current Medical Science》 SCIE CAS 2024年第3期589-602,共14页
Objective Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage.Notably,the knockout of transient receptor potential channel 6(TRPC6)has shown promise in alleviating renal fibrosis... Objective Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage.Notably,the knockout of transient receptor potential channel 6(TRPC6)has shown promise in alleviating renal fibrosis.However,the regulatory impact of TRPC6 on renal fibrosis remains unclear.Methods In vivo,TRPC6 knockout(TRPC6−/−)mice and age-matched 129 SvEv(WT)mice underwent unilateral renal ischemia-reperfusion(uIR)injury surgery on the left renal pedicle or sham operation.Kidneys and serum were collected on days 7,14,21,and 28 after euthanasia.In vitro,primary tubular epithelial cells(PTECs)were isolated from TRPC6−/−and WT mice,followed by treatment with transforming growth factorβ1(TGFβ1)for 72 h.The anti-fibrotic effect of TRPC6−/−and the underlying mechanisms were assessed through hematoxylin-eosin staining,Masson staining,immunostaining,qRT-PCR,and Western blotting.Results Increased TRPC6 expression was observed in uIR mice and PTECs treated with TGFβ1.TRPC6−/−alleviated renal fibrosis by reducing the expression of fibrotic markers(Col-1,α-SMA,and vimentin),as well as decreasing the apoptosis and inflammation of PTECs during fibrotic progression both in vivo and in vitro.Additionally,we found that the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase 3 beta(GSK3β)signaling pathway,a pivotal player in renal fibrosis,was down-regulated following TRPC6 deletion.Conclusion These results suggest that the ablation of TRPC6 may mitigate renal fibrosis by inhibiting the apoptosis and inflammation of PTECs through down-regulation of the PI3K/AKT/GSK3βpathway.Targeting TRPC6 could be a novel therapeutic strategy for preventing chronic kidney disease. 展开更多
关键词 transient receptor potential channel 6 ischemia-reperfusion injury renal fibrosis renal tubular epithelial cells
下载PDF
Solar-driven photothermal catalytic CO_(2) conversion:a review
2
作者 Bachirou Guene Lougou Bo-Xi Geng +8 位作者 Ru-Ming Pan Wei Wang Tian-Tian Yan fang-hua li Hao Zhang Oraléou SanguéDjandja Yong Shuai Meisam Tabatabaei Daniel Sabi Takou 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期2913-2939,共27页
It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts indu... It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts induced by the current methods.The photothermocatalysis process is an emerging research area with great potential in efficiently converting solar energy through various catalytic reactions.However,achieving simultaneously high conversion efficiency,cyclability,and durability is still a daunting challenge.Thus,tremendous work is still needed to enhance solar photo thermal catalytic conversion and promote its large-scale applications.This review developed the principles of coupling solar photon and thermal fields underlying the photothermal effect,exploration of efficient nanocatalysts,development of optofluidic reactor model,and photo thermal synergistic-driven CO_(2) reduction mechanisms.The ultimate goal was to provide an effective approach that can effectively convert solar energy into photocarriers/hot-electrons and heat,and importantly,can couple them to regulate catalysis reaction pathways toward the production of value-added fuel and chemical energy. 展开更多
关键词 PHOTOCHEMISTRY PHOTOTHERMAL CO_(2)catalytic conversion NANOMATERIAL Solar fuels and chemicals
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部