Purpose:Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection tr...Purpose:Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body''s infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistantV. Vulnificus and the protection of their vital organs.Methods:An increasing concentration gradient method was used to induce multidrug-resistantV. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistantV. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis.Results:In mice infected with multidrug-resistantV. Vulnificus, bergamottin prolonged survival (p = 0.014), reduced the serum creatinine (p = 0.002), urea nitrogen (p = 0.030), aspartate aminotransferase (p = 0.029), and alanine aminotransferase (p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β:p = 0.010, IL-6:p = 0.029, TNF-α:p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β:p = 0.010, IL-6:p = 0.011, TNF-α:p = 0.037) and kidney (IL-1β:p = 0.016, IL-6:p = 0.011, TNF-α:p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistantV. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid (p = 0.225), liver (p = 0.186), or kidney (p = 0.637).Conclusion:Bergamottin enhances the tolerance of mice to multidrug-resistantV. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies forV. Vulnificus.展开更多
基金supported by the National Natural Science Foundation of China(grant number:82104247)Chongqing Talent Innovation Leading Plan(grant number:cstc2021ycjhbgzxm0340)+2 种基金Chongqing Doctor Express Project(grant number:CSTB2022BSXM-JCX0024)Hainan Clinical Medical Research Center Project(grant number:LCYX202205)Hainan Province Health Industry Research Project(grant number:22A200082).
文摘Purpose:Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body''s infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistantV. Vulnificus and the protection of their vital organs.Methods:An increasing concentration gradient method was used to induce multidrug-resistantV. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistantV. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis.Results:In mice infected with multidrug-resistantV. Vulnificus, bergamottin prolonged survival (p = 0.014), reduced the serum creatinine (p = 0.002), urea nitrogen (p = 0.030), aspartate aminotransferase (p = 0.029), and alanine aminotransferase (p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β:p = 0.010, IL-6:p = 0.029, TNF-α:p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β:p = 0.010, IL-6:p = 0.011, TNF-α:p = 0.037) and kidney (IL-1β:p = 0.016, IL-6:p = 0.011, TNF-α:p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistantV. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid (p = 0.225), liver (p = 0.186), or kidney (p = 0.637).Conclusion:Bergamottin enhances the tolerance of mice to multidrug-resistantV. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies forV. Vulnificus.