Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method fo...Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51961135303,51932007,21871217,U1905215 and U1705251)the Innovative Research Funds of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHD2020-001)+2 种基金the National Postdoctoral Program for Innovative Talents(No.BX20200261)China Postdoctoral Science Foundation(No.2020M682501)Dean Research Fund(Nos.04530 and 04554)。
文摘Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.