Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanos...Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.展开更多
基金supported by the Natural Science Foundation of Henan Province(No.202300410433)the College Students’Innovative Entrepreneurial Training(No.2022cxcy029),ChinaHirosaki University,Japan,are appreciated.
文摘Amorphous high-entropy materials with abundant defects,coordinatively unsaturated sites,and loosely bonded atoms could exhibit excellent electrocatalytic performance.However,how to fabricate such ma-terials with nanostructure as well as amorphous structure is still full of challenges.In this work,high-entropy metal organic framework(HE-MOF)is employed as the self-sacrificial template to fabricate FeCoNiCuMnP x high-entropy phosphide/carbon(HEP/C)composites.The obtained composite shows a het-erostructured fusiform morphology,in which the HEP is encapsulated by a carbon layer,revealing high electron conductivity as well as rich catalytic active sites for oxygen evolution reaction(OER).Beside,it is found that there is a short-range ordered crystal structure in the amorphous phase,which is bene-ficial for revealing high OER catalytic activity as well as good stability.As a result,the optimum HEP/C composite shows an overpotential 239 mV@10 mA cm^(−2)with a small Tafel slope of 72.5 mV dec^(−1) for catalyzing OER in alkaline solution.