Light collection efficiency is an important factor that affects the performance of many optical and optoelectronic devices.In these devices,the high reflectivity of interfaces can hinder efficient light collection.To ...Light collection efficiency is an important factor that affects the performance of many optical and optoelectronic devices.In these devices,the high reflectivity of interfaces can hinder efficient light collection.To minimize unwanted reflection,anti-reflection surfaces can be fabricated by micro/nanopatterning.In this paper,we investigate the fabrication of broadband anti-reflection Si surfaces by laser micro/nanoprocessing.Laser direct writing is applied to create microstructures on Si surfaces that reduce light reflection by light trapping.In addition,laser interference lithography and metal assisted chemical etching are adopted to fabricate the Si nanowire arrays.The anti-reflection performance is greatly improved by the high aspect ratio subwavelength structures,which create gradients of refractive index from the ambient air to the substrate.Furthermore,by decoration of the Si nanowires with metallic nanoparticles,surface plasmon resonance can be used to further control the broadband reflections,reducing the reflection to below 1.0%across from 300 to 1200 nm.An average reflection of 0.8%is achieved.展开更多
The power electronic transformer(PET) has recently emerged as a type of power converter. It features the basic functions of power conversion and isolation as well as additional functions related to power quality contr...The power electronic transformer(PET) has recently emerged as a type of power converter. It features the basic functions of power conversion and isolation as well as additional functions related to power quality control. A novel PET for a distribution grid called a flexible power distribution unit is proposed in this paper, and the energy exchange mechanism between the network and the load is revealed. A 30 kW 600 VAC/220 VAC/110 VDC medium-frequency isolated prototype is developed and demonstrated. This paper also presents key control strategies of the PET for electrical distribution grid applications,especially under grid voltage disturbance conditions.Moreover, stability issues related to the grid-connected three-phase PET are discussed and verified with an impedance-based analysis. The PET prototype is tested, and it passes the voltage-disturbance ride-through function. The experimental results verify the power quality control abilities of the PET.展开更多
基金The authors would like to acknowledge financial support from the National Research Foundation,Prime Minister’s Office,Singapore under its Competitive Research Program(CRP Award No.NRF-CRP10-2012-04)the Economic Development Board(SPORE,COY-15-EWI-RCFSA/N197-1)The authors would also like to acknowledge funding provided by the Chinese Nature Science Grant(61138002)and 973 Program of China(No.2013CBA01700).
文摘Light collection efficiency is an important factor that affects the performance of many optical and optoelectronic devices.In these devices,the high reflectivity of interfaces can hinder efficient light collection.To minimize unwanted reflection,anti-reflection surfaces can be fabricated by micro/nanopatterning.In this paper,we investigate the fabrication of broadband anti-reflection Si surfaces by laser micro/nanoprocessing.Laser direct writing is applied to create microstructures on Si surfaces that reduce light reflection by light trapping.In addition,laser interference lithography and metal assisted chemical etching are adopted to fabricate the Si nanowire arrays.The anti-reflection performance is greatly improved by the high aspect ratio subwavelength structures,which create gradients of refractive index from the ambient air to the substrate.Furthermore,by decoration of the Si nanowires with metallic nanoparticles,surface plasmon resonance can be used to further control the broadband reflections,reducing the reflection to below 1.0%across from 300 to 1200 nm.An average reflection of 0.8%is achieved.
基金supported in part by the National Basic Research Program of China(No.2016YFB0900404)the National Natural Science Foundation of China(No.51477030,No.51207023)+2 种基金the Cooperative Innovation Fund of Jiangsu Province–the Prospective and Joint Research Project(No.BY2015070-18)the Basic and Prospective Science and Technology Project of State Grid Corporation of China(No.PD71-17-024)the Fundamental Research Funds for the Central Universities(No.2242017K40159)
文摘The power electronic transformer(PET) has recently emerged as a type of power converter. It features the basic functions of power conversion and isolation as well as additional functions related to power quality control. A novel PET for a distribution grid called a flexible power distribution unit is proposed in this paper, and the energy exchange mechanism between the network and the load is revealed. A 30 kW 600 VAC/220 VAC/110 VDC medium-frequency isolated prototype is developed and demonstrated. This paper also presents key control strategies of the PET for electrical distribution grid applications,especially under grid voltage disturbance conditions.Moreover, stability issues related to the grid-connected three-phase PET are discussed and verified with an impedance-based analysis. The PET prototype is tested, and it passes the voltage-disturbance ride-through function. The experimental results verify the power quality control abilities of the PET.