The chlorophyll a(Chl a)is an important indicator of marine ecosystems.The spatiotemporal variation of the Chl a greatly aff ects the mariculture and marine ranching in coastal waters of the Shandong Peninsula.In the ...The chlorophyll a(Chl a)is an important indicator of marine ecosystems.The spatiotemporal variation of the Chl a greatly aff ects the mariculture and marine ranching in coastal waters of the Shandong Peninsula.In the current study,the climatology and seasonal variability of surface Chl-a concentration around the Shandong Peninsula are investigated based on 16 years(December 2002-November 2018)of satellite observations.The results indicate that the annual mean Chl-a concentration is greater in the Bohai Sea than in the Yellow Sea and decreases from coastal waters to off shore waters.The highest Chl-a concentrations are found in Laizhou Bay(4.2-8.0 mg/m^(3)),Haizhou Bay(4.2-5.9 mg/m^(3))and the northeast coast of the Shandong Peninsula(4.4-5.0 mg/m^(3)),resulting from the combined eff ects of the intense riverine input and long residence time caused by the concave shape of the coastline.The seasonal Chl-a concentration shows a significant spatial variation.The Chl-a concentrations in these three subregions generally exhibit an annual maximum in August/September,due to the combined eff ects of sea surface temperature,river discharge and sea surface wind.In the southeast coast region,however,the Chl-a concentration is lowest throughout the year and reaches a maximum in February with a minimum in July,forced by the seasonal evolution of the Yellow Sea Cold Water and monsoon winds.The interannual Chl-a concentration trends vary among regions and seasons.There are significant increasing trends over a large area around Haizhou Bay from winter to summer,which are mainly caused by the rising sea surface temperature and eutrophication.In other coastal areas,the Chl-a concentration shows decreasing trends,which are clearest in summer and induced by the weakening land rainfall.This study highlights the differences in the Chl-a dynamics among regions around the Shandong Peninsula and is helpful for further studies of coupled physical-ecological-human interactions at multiple scales.展开更多
Deoxygenation has frequently appeared in coastal ecosystems over the past century due to the joint infl uence of increasing anthropogenically induced nutrient inputs and global warming.The semi-enclosed Bohai Sea is a...Deoxygenation has frequently appeared in coastal ecosystems over the past century due to the joint infl uence of increasing anthropogenically induced nutrient inputs and global warming.The semi-enclosed Bohai Sea is a typical system that is prone to deoxygenation,with regular hypoxia events consistently recorded in recent decades.Based on in-situ observation data collected in large-scale voyage surveys in the Bohai Sea during 2008-2017,the seasonal variability in dissolved oxygen(DO)and its controlling mechanisms were studied.The results indicated that in spring and autumn,the DO distributions exhibited similar spatial patterns in the surface and bottom layers,while in summer,its spatial distribution was characterized by large-scale oxygen-poor zones distributed off the Qinhuangdao Coast and the central southern Bohai Sea in the bottom layer.The controlling mechanisms of the DO distribution varied from season to season.Spring and autumn DO distributions were dominated by the seawater temperature.Under the combined eff ects of stratifi cation and decomposition,the summer bottom DO exhibited dual-core distribution.On the one hand,stratifi cation could greatly impede vertical mixing,resulting in reduced bottom DO replenishment.On the other hand,the increased bottom organic matter intensifi ed the decomposition processes,inducing massive DO consumption and elevated dissolved inorganic nitrogen concentrations.In addition,the stronger stratifi cation might be the reason for the more severe deoxygenation in the southern oxygen-poor zones in summer.Our study provides guidance for an in-depth understanding of the DO seasonality in the Bohai Sea and the mechanisms that modulate it and for the improvement of hypoxia forecasts in ocean models.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41776012,41606107,41576082)the National Key Research and Development Program of China(Nos.2019YFD0901305,2018YFC1407605)+4 种基金the Science and Technology Development Plan Project of Shandong Province(No.2016ZDJS09A02)the Key Research and Development Project of Zhejiang Province(No.2020C03012)the Key Research and Development Project of Guangdong Province(No.2020B1111030002)the Major Science and Technology Project of Sanya YZBSTC(No.YZ2019ZD0X)the Shandong Provincial Natural Science Foundation(No.ZR201911060280)。
文摘The chlorophyll a(Chl a)is an important indicator of marine ecosystems.The spatiotemporal variation of the Chl a greatly aff ects the mariculture and marine ranching in coastal waters of the Shandong Peninsula.In the current study,the climatology and seasonal variability of surface Chl-a concentration around the Shandong Peninsula are investigated based on 16 years(December 2002-November 2018)of satellite observations.The results indicate that the annual mean Chl-a concentration is greater in the Bohai Sea than in the Yellow Sea and decreases from coastal waters to off shore waters.The highest Chl-a concentrations are found in Laizhou Bay(4.2-8.0 mg/m^(3)),Haizhou Bay(4.2-5.9 mg/m^(3))and the northeast coast of the Shandong Peninsula(4.4-5.0 mg/m^(3)),resulting from the combined eff ects of the intense riverine input and long residence time caused by the concave shape of the coastline.The seasonal Chl-a concentration shows a significant spatial variation.The Chl-a concentrations in these three subregions generally exhibit an annual maximum in August/September,due to the combined eff ects of sea surface temperature,river discharge and sea surface wind.In the southeast coast region,however,the Chl-a concentration is lowest throughout the year and reaches a maximum in February with a minimum in July,forced by the seasonal evolution of the Yellow Sea Cold Water and monsoon winds.The interannual Chl-a concentration trends vary among regions and seasons.There are significant increasing trends over a large area around Haizhou Bay from winter to summer,which are mainly caused by the rising sea surface temperature and eutrophication.In other coastal areas,the Chl-a concentration shows decreasing trends,which are clearest in summer and induced by the weakening land rainfall.This study highlights the differences in the Chl-a dynamics among regions around the Shandong Peninsula and is helpful for further studies of coupled physical-ecological-human interactions at multiple scales.
基金Supported by the National Natural Science Foundation of China(No.41776012)the Key R&D Project of Zhejiang Province(No.2020C03012)+4 种基金the Shandong Provincial Natural Science Foundation(No.ZR2020MD059)the Key R&D Project of Guangdong Province(No.2020B1111030002)the Major Science and Technology Project of Sanya YZBSTC(No.SKJC-KJ-2019KY03)the National Key R&D Program of China(No.2019YFD0901305)the Marine Science and Technology Project of North China Sea Bureau in 2020:Tempo-Spatial Distribution and Its Mechanisms of the Bottom Oxygen-Poor Zones in the Bohai Sea(No.202001)。
文摘Deoxygenation has frequently appeared in coastal ecosystems over the past century due to the joint infl uence of increasing anthropogenically induced nutrient inputs and global warming.The semi-enclosed Bohai Sea is a typical system that is prone to deoxygenation,with regular hypoxia events consistently recorded in recent decades.Based on in-situ observation data collected in large-scale voyage surveys in the Bohai Sea during 2008-2017,the seasonal variability in dissolved oxygen(DO)and its controlling mechanisms were studied.The results indicated that in spring and autumn,the DO distributions exhibited similar spatial patterns in the surface and bottom layers,while in summer,its spatial distribution was characterized by large-scale oxygen-poor zones distributed off the Qinhuangdao Coast and the central southern Bohai Sea in the bottom layer.The controlling mechanisms of the DO distribution varied from season to season.Spring and autumn DO distributions were dominated by the seawater temperature.Under the combined eff ects of stratifi cation and decomposition,the summer bottom DO exhibited dual-core distribution.On the one hand,stratifi cation could greatly impede vertical mixing,resulting in reduced bottom DO replenishment.On the other hand,the increased bottom organic matter intensifi ed the decomposition processes,inducing massive DO consumption and elevated dissolved inorganic nitrogen concentrations.In addition,the stronger stratifi cation might be the reason for the more severe deoxygenation in the southern oxygen-poor zones in summer.Our study provides guidance for an in-depth understanding of the DO seasonality in the Bohai Sea and the mechanisms that modulate it and for the improvement of hypoxia forecasts in ocean models.