It is a challenge to design an absorber which can simultaneously satisfy comprehensive demands of broad absorption band,wide incident angle range,and low-profile.In this work,we designed a metamaterial absorber(MMA)ba...It is a challenge to design an absorber which can simultaneously satisfy comprehensive demands of broad absorption band,wide incident angle range,and low-profile.In this work,we designed a metamaterial absorber(MMA)based on the antenna reciprocity theory to achieve the above goals.Firstly,a three-dimensional(3D)propeller-like structure with reference to a typical magneto-electric dipole(MED)an-tenna was proposed and analyzed by the characteristic mode(CM)theory to realize near-omnidirectional radiation.Then,the radiation-absorption conversion was realized by introducing lossy materials into this structure,and the absorption performance was further improved by optimizing the dispersion feature of the lossy materials.Finally,the propeller-like metamaterial absorber with a thickness of 0.113λL was manufactured efficiently and integrally through 3D printing technology.Simulation results showed that the proposed absorber can achieve broadband absorption with the efficiency more than 90%in the fre-quency band of 3.4-10 GHz.It also has excellent wide-angle absorption capacity,with Transverse Electric(TE)polarization of 0°to 50°and Transverse Magnetic(TM)polarization of 0°to 80°.With the increase of incident angle,the upper limit of absorption bandwidth can be gradually extended to 18 GHz.Moreover,the effectiveness in the range of 0°to 60°incident angle is verified by measuring the reflectivity of the 3D printed absorber.展开更多
基金supported by the Ministry of Industry and Information Technology (No.56XCA22042)the Priority Aca-demic Program Development of Jiangsu Higher Education Institu-tions (PAPD)the Fundamental Research Funds for the Central Universities,Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave and Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics).
文摘It is a challenge to design an absorber which can simultaneously satisfy comprehensive demands of broad absorption band,wide incident angle range,and low-profile.In this work,we designed a metamaterial absorber(MMA)based on the antenna reciprocity theory to achieve the above goals.Firstly,a three-dimensional(3D)propeller-like structure with reference to a typical magneto-electric dipole(MED)an-tenna was proposed and analyzed by the characteristic mode(CM)theory to realize near-omnidirectional radiation.Then,the radiation-absorption conversion was realized by introducing lossy materials into this structure,and the absorption performance was further improved by optimizing the dispersion feature of the lossy materials.Finally,the propeller-like metamaterial absorber with a thickness of 0.113λL was manufactured efficiently and integrally through 3D printing technology.Simulation results showed that the proposed absorber can achieve broadband absorption with the efficiency more than 90%in the fre-quency band of 3.4-10 GHz.It also has excellent wide-angle absorption capacity,with Transverse Electric(TE)polarization of 0°to 50°and Transverse Magnetic(TM)polarization of 0°to 80°.With the increase of incident angle,the upper limit of absorption bandwidth can be gradually extended to 18 GHz.Moreover,the effectiveness in the range of 0°to 60°incident angle is verified by measuring the reflectivity of the 3D printed absorber.