期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal-nitrogen-doped hybrid ionic/electronic conduction triple-phase interfaces for high-performance all-solid-state lithium-sulfur batteries 被引量:1
1
作者 Hao Li Jiangping Song +3 位作者 fanglin wu Rui Wang Dan Liu Haolin Tang 《Nano Research》 SCIE EI CSCD 2023年第8期10956-10965,共10页
The point-to-point contact mechanism in all-solid-state Li-S batteries(ASSLSBs)is not as efficient as a liquid electrolyte which has superior mobility in the electrode,resulting in a slower reaction kinetics and inade... The point-to-point contact mechanism in all-solid-state Li-S batteries(ASSLSBs)is not as efficient as a liquid electrolyte which has superior mobility in the electrode,resulting in a slower reaction kinetics and inadequate ionic/electronic conduction network between the S(or Li_(2)S),conductive carbon,and solid-state electrolytes(SSEs)for achieving a swift(dis)charge reaction.Herein,a series of hybrid ionic/electronic conduction triple-phase interfaces with transition metal and nitrogen co-doping were designed.The graphitic ordered mesoporous carbon frameworks(TM-N-OMCs;TM=Fe,Co,Ni,and Cu)serve as hosts for Li_(2)S and Li_(6)PS_(5)Cl(LPSC)and provide abundant reaction sites on the triple interface.Results from both experimental and computational research display that the combination of Cu-N co-dopants can promote the Li-ion diffusion for rapid transformation of Li_(2)S with adequate ionic(6.73×10^(−4)S·cm^(−1))/electronic conductivities(1.77×10^(−2)S·cm^(−1))at 25℃.The as-acquired Li_(2)S/Cu-N-OMC/LPSC electrode exhibits a high reversible capacity(1147.7 mAh·g^(−1))at 0.1 C,excellent capacity retention(99.5%)after 500 cycles at 0.5 C,and high areal capacity(7.08 mAh·cm^(−2)). 展开更多
关键词 all-solid-state lithium-sulfur batteries triple-phase interfaces ordered mesoporous carbons mixed ion/electron conductivities Li_(6)PS_(5)Cl solid electrolyte
原文传递
Beneficial impact of lithium bis(oxalato)borate as electrolyte additive for high-voltage nickel-rich lithium-battery cathodes
2
作者 fanglin wu Angelo Mullaliu +6 位作者 Thomas Diemant Dominik Stepien Tatjana NParac-Vogt Jae-Kwang Kim Dominic Bresser Guk-Tae Kim Stefano Passerini 《InfoMat》 SCIE CSCD 2023年第8期67-80,共14页
High-voltage nickel-rich layered cathodes possess the requisite,such as excellent discharge capacity and high energy density,to realize lithium batteries with higher energy density.However,such materials suffer from s... High-voltage nickel-rich layered cathodes possess the requisite,such as excellent discharge capacity and high energy density,to realize lithium batteries with higher energy density.However,such materials suffer from structural and interfacial instability at high voltages(>4.3 V).To reinforce the stability of these cathode materials at elevated voltages,lithium borate salts are investigated as electrolyte additives to generate a superior cathode-electrolyte interphase.Specifically,the use of lithium bis(oxalato)borate(LiBOB)leads to an enhanced cycling stability with a capacity retention of 81.7%.Importantly,almost no voltage hysteresis is detected after 200 cycles at 1C.This outstanding electrochemical performance is attributed to an enhanced structural and interfacial stability,which is attained by suppressing the generation of micro-cracks and the superficial structural degradation upon cycling.The improved stability stems from the formation of a fortified borate-containing interphase which protects the highly reactive cathode from parasitic reactions with the electrolyte.Finally,the decomposition process of LiBOB and the possible adsorption routes to the cathode surface are deduced and elucidated. 展开更多
关键词 cathode electrolyte interphase electrolyte additive high voltage cathodes LIBOB nickel-rich cathodes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部