A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO)sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As)and cadmium (Cd) in water.The maximum As(Ⅲ)...A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO)sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As)and cadmium (Cd) in water.The maximum As(Ⅲ) and Cd(Ⅱ) adsorption capacities of 1%CaSFMBO were 156.25 mg/g and 107.53 mg/g respectively in single-adsorption systems.The adsorption of As and Cd by the Ca-SFMBO sorbent was pH-dependent at values from 1 to 7,with an optimal adsorption pH of 6.In the dual-adsorbate system,the presence of Cd(Ⅱ) at low concentrations enhanced As(Ⅲ) adsorption by 33.3%,while the adsorption of As(Ⅲ) was inhibited with the increase of Cd(Ⅱ) concentration.Moreover,the addition of As(Ⅲ) increased the adsorption capacity for Cd(Ⅱ) up to two-fold.Through analysis by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR),it was inferred that the mechanism for the co-adsorption of Cd(Ⅱ) and As(Ⅲ) included both competitive and synergistic effects,which resulted from the formation of ternary complexes.The results indicate that the Ca-SFMBO material developed here could be used for the simultaneous removal of As(Ⅲ) and Cd(Ⅱ) from contaminated water.展开更多
基金supported by the National Key Technology R&D Program (No.2018YFD0800202)。
文摘A new calcium-modified and starch-stabilized ferromanganese binary oxide (Ca-SFMBO)sorbent was fabricated with different Ca concentrations for the adsorption of arsenic (As)and cadmium (Cd) in water.The maximum As(Ⅲ) and Cd(Ⅱ) adsorption capacities of 1%CaSFMBO were 156.25 mg/g and 107.53 mg/g respectively in single-adsorption systems.The adsorption of As and Cd by the Ca-SFMBO sorbent was pH-dependent at values from 1 to 7,with an optimal adsorption pH of 6.In the dual-adsorbate system,the presence of Cd(Ⅱ) at low concentrations enhanced As(Ⅲ) adsorption by 33.3%,while the adsorption of As(Ⅲ) was inhibited with the increase of Cd(Ⅱ) concentration.Moreover,the addition of As(Ⅲ) increased the adsorption capacity for Cd(Ⅱ) up to two-fold.Through analysis by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR),it was inferred that the mechanism for the co-adsorption of Cd(Ⅱ) and As(Ⅲ) included both competitive and synergistic effects,which resulted from the formation of ternary complexes.The results indicate that the Ca-SFMBO material developed here could be used for the simultaneous removal of As(Ⅲ) and Cd(Ⅱ) from contaminated water.