Dielectric ceramics with high energy storage density and energy efficiency play an important role in high power energy storage applications.In this work,lead free relaxor ferroelectric ceramics in (1-x) Bi_(0.51)Na_(0...Dielectric ceramics with high energy storage density and energy efficiency play an important role in high power energy storage applications.In this work,lead free relaxor ferroelectric ceramics in (1-x) Bi_(0.51)Na_(0.47)TiO_(3-x)Ba(Zr_(0.3)Ti_(0.7))O_(3)(BNT-BZT100x:x=0.20,0.30,0.40 and 0.50)system are fabricated by conventional solid-state sintering method.The BNT-BZT100x ceramics are sintered dense with minimal pores,exhibiting pseudocubic symmetry and strong relaxor characteristic.A high energy storage density of 3.1 J/cm^(3) and high energy efficiency of 91% are simultaneously achieved in BNT-BZT40 ceramic with 0.1mm in thickness,at the applied electric field of 280 kV/cm.The temperature stability of the energy density is studied over temperature range of 20-160℃ ,showing minimal variation below 1.5%,together with the excellent cycling reliability(the variations of both energy density and efficiency are below 3% up to 106 cycles),making BNT-BZT40 ceramic promising candidate for high-temperature dielectric and energy storage applications.展开更多
There is a general observation that the Curie temperature and piezoelectric property of the ferroelectric ceramics can be enhanced only at the expense of each other,i.e.,higher piezoelectricity,lower Curie temperature...There is a general observation that the Curie temperature and piezoelectric property of the ferroelectric ceramics can be enhanced only at the expense of each other,i.e.,higher piezoelectricity,lower Curie temperature,thus,limits their applications over broad temperature range.In this research,Sm-modified 0.15 Pb(Mg_(1/3)Nb_(2/3))O_(3)-(0.85-x)PbZrO_(3)-xPbTiO_(3) ceramics have been studied,where excellent piezoelectric coefficients d33¼720 pC/N,d_(33)*=950 pm/V and high Curie temperature T_(C)=293℃ were simultaneously achieved for x=0.42 composition by designing the morphotropic phase boundary(MPB)with local structural heterogeneity.Of particular significance is that a high thermal stability was observed with piezoelectric variation below 20%with temperature up to 280℃,demonstrating that the x=0.42 composition is a good candidate for piezoelectric application over broad temperature range where high temperature stability is required.This work provides a good paradigm for designing highperformance piezoelectric ceramics with high thermal stability via a combination of MPB and local structural heterogeneity.展开更多
基金supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China(No.U1601209)Major Program of the Natural Science Foundation of China(51790490)+1 种基金the Technical Innovation Program of Hubei Province(Grant No.2017AHB055)ARC(FT140100698)for support.
文摘Dielectric ceramics with high energy storage density and energy efficiency play an important role in high power energy storage applications.In this work,lead free relaxor ferroelectric ceramics in (1-x) Bi_(0.51)Na_(0.47)TiO_(3-x)Ba(Zr_(0.3)Ti_(0.7))O_(3)(BNT-BZT100x:x=0.20,0.30,0.40 and 0.50)system are fabricated by conventional solid-state sintering method.The BNT-BZT100x ceramics are sintered dense with minimal pores,exhibiting pseudocubic symmetry and strong relaxor characteristic.A high energy storage density of 3.1 J/cm^(3) and high energy efficiency of 91% are simultaneously achieved in BNT-BZT40 ceramic with 0.1mm in thickness,at the applied electric field of 280 kV/cm.The temperature stability of the energy density is studied over temperature range of 20-160℃ ,showing minimal variation below 1.5%,together with the excellent cycling reliability(the variations of both energy density and efficiency are below 3% up to 106 cycles),making BNT-BZT40 ceramic promising candidate for high-temperature dielectric and energy storage applications.
基金supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China(No.U1601209)the Natural Science Foundation of China(51872213)+1 种基金Major Program of the Natural Science Foundation of China(51790490)the Fundamental Research Funds for the Central Universities(2019-YB-009).
文摘There is a general observation that the Curie temperature and piezoelectric property of the ferroelectric ceramics can be enhanced only at the expense of each other,i.e.,higher piezoelectricity,lower Curie temperature,thus,limits their applications over broad temperature range.In this research,Sm-modified 0.15 Pb(Mg_(1/3)Nb_(2/3))O_(3)-(0.85-x)PbZrO_(3)-xPbTiO_(3) ceramics have been studied,where excellent piezoelectric coefficients d33¼720 pC/N,d_(33)*=950 pm/V and high Curie temperature T_(C)=293℃ were simultaneously achieved for x=0.42 composition by designing the morphotropic phase boundary(MPB)with local structural heterogeneity.Of particular significance is that a high thermal stability was observed with piezoelectric variation below 20%with temperature up to 280℃,demonstrating that the x=0.42 composition is a good candidate for piezoelectric application over broad temperature range where high temperature stability is required.This work provides a good paradigm for designing highperformance piezoelectric ceramics with high thermal stability via a combination of MPB and local structural heterogeneity.