期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance 被引量:1
1
作者 Yaling Jia fangshuai zhang +5 位作者 Qinglin Liu Jun Yang Jiahui Xian Yamei Sun Yinle Li Guangqin Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期1070-1073,共4页
Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques... Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques in energy storage and conversion. Herein, a hierarchical porous single atomic Fe electrocatalyst(Fe/Z8-E-C) is rationally designed and synthesized via acid etching, calcination, adsorption of Fe precursor and recalcination processes. This unique electrocatalyst Fe/Z8-E-C shows excellent oxygen reduction performance with a half-wave potential of 0.89 V in 0.1 mol/L KOH, 30 m V superior to that of commercial Pt/C(0.86 V), which is also significantly higher than that of typical Fe-doped ZIF-8 derived carbon nanoparticles(Fe/Z8-C) with a half-wave potential of 0.84 V. Furthermore, Fe/Z8-E-C-based Zn-air battery exhibits greatly enhanced peak power density and specific capacity than those of original Fe/Z8-C,verifying the remarkable performance and practicability of this specially designed hierarchical structure due to its efficient utilization of the active sites and rapid mass transfer. This present work proposes a new method to rationally synthesize single atom electrocatalysts loaded on hierarchical porous frame materials for catalysis and energy conversion. 展开更多
关键词 Single atom Fe High atom utilization Efficient mass transfer Oxygen reduction reaction Zinc-air battery Efficient performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部