期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TBC1D1 is an energy-responsive polarization regulator of macrophages via governing ROS production in obesity
1
作者 Qi Wang Ping Rong +12 位作者 Wen Zhang Xinyu Yang Liang Chen Ye Cao Minjun Liu Weikuan Feng Qian Ouyang Qiaoli Chen Hailong Li Hui Liang fanguo meng Hong-Yu Wang Shuai Chen 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第9期1899-1914,共16页
Energy status is linked to the production of reactive oxygen species(ROS)in macrophages,which is elevated in obesity.However,it is unclear how ROS production is upregulated in macrophages in response to energy overloa... Energy status is linked to the production of reactive oxygen species(ROS)in macrophages,which is elevated in obesity.However,it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity.Here,we show that the Rab-GTPase activating protein(Rab GAP)TBC1D1,a substrate of the energy sensor AMP-activated protein kinase(AMPK),is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development.TBC1D1 deletion decreases,whereas an energy overload-mimetic non-phosphorylatable TBC1D1^(S231A)Amutation increases,ROS production and M1-like polarization in macrophages.Mechanistically,TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation.Transplantation of TBC1D1^(S231A)bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable Tt SOD for removal of ROS selectively in macrophages alleviates both TBC1D1~(S231A)mutation-and diet-induced obesity.Our findings therefore have implications for drug discovery to combat obesity. 展开更多
关键词 TBC1D1 AMPK Rab8a NOX2 ROS inflammation MACROPHAGE OBESITY
原文传递
High-fat diet impairs gut barrier through intestinal microbiota-derived reactive oxygen species
2
作者 Nianyi Zeng Fan Wu +18 位作者 Junqi Lu Xiang Li Shaomei Lin Lang Zhou Zhongwei Wang Guangyan Wu Qingfa Huang Daowen Zheng Jie Gao Shan Wu Xiaojiao Chen Muxuan Chen fanguo meng Haitao Shang Yan He Peng Chen Hong Wei Zhuang Li Hongwei Zhou 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第5期879-891,共13页
Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet(HFD)-associated metabolic disorders.However,the underlying mechanism remains elusive.In the present study,by comparing HFD-a... Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet(HFD)-associated metabolic disorders.However,the underlying mechanism remains elusive.In the present study,by comparing HFD-and normal diet(ND)-treated mice,we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier.Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions,as confirmed by the increased reactive oxygen species(ROS)levels in fecal microbiota incubation in vitro and in the lumen,which were detected using in vivo fluorescence imaging.This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation(FMT)into germ-free(GF)mice,downregulating the gut barrier tight junctions.Similarly,mono-colonizing GF mice with an Enterococcus strain excelled in ROS production,damaged the gut barrier,induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells,and exacerbated fatty liver,compared with other low-ROS-producing Enterococcus strains.Oral administration of recombinant high-stability-superoxide dismutase(SOD)significantly reduced intestinal ROS,protected the gut barrier,and improved fatty liver against the HFD.In conclusion,our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases. 展开更多
关键词 fatty liver disease gut microbiota gut barrier high-fat diet oxidative stress reactive oxygen species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部