期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics
1
作者 Junhui Li Haotian Zhang +4 位作者 Cuiping Li Xingxu Zhu Ruitong Liu fangwei duan Yongming Peng 《Energy Engineering》 EI 2024年第2期291-313,共23页
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order... In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%. 展开更多
关键词 Hydrogen storage system simulation modeling ELECTROLYZER fuel cell capacity loss
下载PDF
Ti_(4)O_(7) supported IrO_(x) for anode reversal tolerance in proton exchange membrane fuel cell
2
作者 Yonghuan LI Wei SONG +5 位作者 Guang JIANG Yue YANG Hongmei YU Zhigang SHAO fangwei duan Yingxuan YANG 《Frontiers in Energy》 SCIE CSCD 2022年第5期852-861,共10页
Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions.In this case,carbon corrosion occurs.Oxygen evolution reaction(OER)catalysts can... Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions.In this case,carbon corrosion occurs.Oxygen evolution reaction(OER)catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage.The mixture of hydrogen oxidation reaction(HOR)and unsupported OER catalyst not only reduces the electrolysis efficiency,but also influences the initial performance of the fuel cell.Herein,Ti_(4)O_(7) supported IrO_(x) is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode.When the cell reverse time is less than 100 min,the cell voltage of the MEA added with IrO_(x)/Ti_(4)O_(7) has almost no attenuation.Besides,the MEA has a longer reversal time(530 min)than IrO_(x)(75 min),showing an excellent reversal tolerance.The results of electron microscopy spectroscopy show that IrO_(x) particles have a good dispersity on the surface of Ti_(4)O_(7) and IrO_(x)/Ti_(4)O_(7) particles are uniformly dispersed on the anode catalytic layer.After the stability test,the Ti_(4)O_(7) support has little decay,demonstrating a high electrochemical stability.IrO_(x)/Ti_(4)O_(7) with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell. 展开更多
关键词 proton exchange membrane fuel cell(PEMFC) fuel starvation cell reverse reversal tolerance anode oxygen evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部