期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lactate metabolism in neurodegenerative diseases 被引量:3
1
作者 Chaoguang Yang Rui-Yuan Pan +1 位作者 fangxia guan Zengqiang Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期69-74,共6页
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin... Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research. 展开更多
关键词 Alzheimer's disease Astrocyte-Neuron Lactate Shuttle brain central nervous system glucose metabolism GLYCOLYSIS NEUROINFLAMMATION Parkinson's disease protein lactylation signaling molecule
下载PDF
Neuronal-like differentiation of single versus multiple treatments with human amnion-derived mesenchymal stem cells induced by basic fibroblast growth factor 被引量:3
2
作者 Hongliang Jiao fangxia guan +7 位作者 Xiang Hu Jianbin Li Hong Shan Wei Li Jun Li Ying Du Bo Yang Yunfan Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第9期694-698,共5页
BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of bas... BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of basic fibroblast growth factor (bFGF)-induced cultures of human amnion-derived mesenchymal stem cells (AMSCs) and differentiation into neuronal-like cells. DESIGN, TIME AND SETTING: Comparative observation. The study was performed at the Laboratory of Microbiology and Immunology, Basic Medical School of Zhengzhou University from January to May 2008. METHODS: Amnia from full-term, uterine-incision delivery were donated by 12 healthy women. AMSCs were obtained by cell separation and culture techniques, and were passaged and induced by bFGF. From the third passage, a total of 1 mLAMSCs, at a density of 1.0 × 10^4/mL, was separately harvested from six samples, which served as group A. A total of 1 mL AMSCs, at a density of 1.0 × 10^4/mL, was harvested separately from the remaining six samples, which served a group B. A total of 0.5 mL from the six samples of group A and 0.5 mL from the six samples of grot, B were combined to form group C. MAIN OUTCOME MEASURES: Differences in cell quantity among the three groups were compare by cell quantification and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Expression of a glial cell marker, neuron-specific enolase, and nestin was detected in the three groups by immunocytochemistry. RESULTS: Cell quantification and MTT analysis of live cells, as well as AMSC absorbance, were significantly greater in group C compared with groups A and B at 18 days of culture (P 〈 0.05), anc no significant difference was observed between groups A and B. Glial fibrillary acidic protein, neuron-specific enolase, and nestin were expressed in all groups following bFGF induction. CONCLUSION: Mixed AMSC cultures promoted proliferation, and bFGF-induced AMSCs differentiated into neuronal-like cells. 展开更多
关键词 AMNION mesenchymal stem cells induction mixed culture
下载PDF
REGγ drives Lgr5^(+) stem cells to potentiate radiation induced intestinal regeneration
3
作者 Xiangzhan Zhu Minglei Yang +18 位作者 Zaijun Lin Solomon Kibreab Mael Ya Li Lili Zhang Yaqi Kong Yaodong Zhang Yuping Ren Jianhui Li Zimeng Wang Ying Zhang Bo yang Tingmei Huang fangxia guan Zhenlong Li Robb E Moses Lei Li Bing Wang Xiaotao Li Bianhong Zhang 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第8期1608-1623,共16页
Leucine-rich repeat containing G protein-coupled receptor 5(Lgr5), a marker of intestinal stem cells(ISCs), is considered to play key roles in tissue homoeostasis and regeneration after acute radiation injury. However... Leucine-rich repeat containing G protein-coupled receptor 5(Lgr5), a marker of intestinal stem cells(ISCs), is considered to play key roles in tissue homoeostasis and regeneration after acute radiation injury. However, the activation of Lgr5 by integrated signaling pathways upon radiation remains poorly understood. Here, we show that irradiation of mice with whole-body depletion or conditional ablation of REGγ in Lgr5^(+) stem cell impairs proliferation of intestinal crypts, delaying regeneration of intestine epithelial cells. Mechanistically, REGγ enhances transcriptional activation of Lgr5 via the potentiation of both Wnt and Hippo signal pathways. TEAD4 alone or cooperates with TCF4, a transcription factor mediating Wnt signaling, to enhance the expression of Lgr5. Silencing TEAD4 drastically attenuated β-catenin/TCF4 dependent expression of Lgr5. Together, our study reveals how REGγ controls Lgr5 expression and expansion of Lgr5+stem cells in the regeneration of intestinal epithelial cells.Thus, REGγ proteasome appears to be a potential therapeutic target for radiation-induced gastrointestinal disorders. 展开更多
关键词 REGγ intestinal stem cell LGR5 WNT YAP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部