Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a...Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a hydrophobic ionic liquid(IL,i.e.,[BMIM][NTF2])to boost the performance of a nitrogen coordinated single atom cobalt catalyst(i.e.),cobalt phthalocyanine(CoPc)supported on carbon nanotubes(CNTs).We find a strong correlation between the ORR performance of CoPc/CNT and the thickness of its IL coatings.Detailed characterization revealed that a higher O_(2)solubility(2.12×10^(−3)mol/L)in the IL compared to aqueous electrolytes provides a local O2 enriched surface layer near active catalytic sites,enhancing the ORR thermodynamics.Further,the hydrophobic IL can efficiently repel the as‐synthesized H_(2)O_(2)molecules from the catalyst surface,preventing their fast decomposition to H_(2)O,resulting in improved H_(2)O_(2)selectivity.Compared to CoPc/CNT without IL coatings,the catalyst with an optimal~8 nm IL coating can deliver a nearly 4 times higher mass specific kinetic current density and 12.5%higher H2O2 selectivity up to 92%.In a two‐electrode electrolyzer test,the optimal catalyst exhibits an enhanced productivity of 3.71 molH2O2 gcat^(–1)h^(–1),and robust stability.This IL‐based interfacial engineering strategy may also be extended to many other electrochemical reactions by carefully tailoring the thickness and hydrophobicity of IL coatings.展开更多
文摘Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a hydrophobic ionic liquid(IL,i.e.,[BMIM][NTF2])to boost the performance of a nitrogen coordinated single atom cobalt catalyst(i.e.),cobalt phthalocyanine(CoPc)supported on carbon nanotubes(CNTs).We find a strong correlation between the ORR performance of CoPc/CNT and the thickness of its IL coatings.Detailed characterization revealed that a higher O_(2)solubility(2.12×10^(−3)mol/L)in the IL compared to aqueous electrolytes provides a local O2 enriched surface layer near active catalytic sites,enhancing the ORR thermodynamics.Further,the hydrophobic IL can efficiently repel the as‐synthesized H_(2)O_(2)molecules from the catalyst surface,preventing their fast decomposition to H_(2)O,resulting in improved H_(2)O_(2)selectivity.Compared to CoPc/CNT without IL coatings,the catalyst with an optimal~8 nm IL coating can deliver a nearly 4 times higher mass specific kinetic current density and 12.5%higher H2O2 selectivity up to 92%.In a two‐electrode electrolyzer test,the optimal catalyst exhibits an enhanced productivity of 3.71 molH2O2 gcat^(–1)h^(–1),and robust stability.This IL‐based interfacial engineering strategy may also be extended to many other electrochemical reactions by carefully tailoring the thickness and hydrophobicity of IL coatings.