期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
1
作者 安雪娥 商正君 +6 位作者 马传贺 郑新和 张翠玲 孙琳 越方禹 李波 陈晔 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期332-337,共6页
Temperature and excitation dependent photoluminescence(PL) of InGaN epilayer grown on c-plane Ga N/sapphire template by molecular beam epitaxy(MBE) has been systematically investigated. The emission spectra of the sam... Temperature and excitation dependent photoluminescence(PL) of InGaN epilayer grown on c-plane Ga N/sapphire template by molecular beam epitaxy(MBE) has been systematically investigated. The emission spectra of the sample consisted of strong multiple peaks associated with one stimulated emission(SE) located at 430 nm and two spontaneous emissions(SPE) centered at about 450 nm and 480 nm, indicating the co-existence of shallow and deep localized states.The peak energy of SE exhibiting weak s-shaped variation with increasing temperature revealed the localization effect of excitons. Moreover, an abnormal increase of the SPE intensity with increasing temperature was also observed, which indicated that the carrier transfer between the shallow and deeper localized states exists. Temperature dependent time-resolved PL(TRPL) demonstrated the carrier transfer processes among the localized states. In addition, a slow thermalization of hot carriers was observed in InGaN film by using TRPL and transient differential reflectivity, which is attributed to the phonon bottleneck effect induced by indium aggregation. 展开更多
关键词 INGAN stimulated EMISSION SPONTANEOUS EMISSION CARRIER transfer
下载PDF
Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white lightemitting diodes 被引量:5
2
作者 Yu Zhang Guishun Li +5 位作者 Changkun She Shaohua Liu fangyu yue Chengbin Jing Ya Cheng Junhao Chu 《Nano Research》 SCIE EI CSCD 2021年第8期2770-2775,共6页
The poor stability of halide perovskite nanocrystals(NCs)has severely hindered future practical application.Herein,we proposed a facile and effective ligand modification route to synthesize stable CsPbBr_(3) nanocryst... The poor stability of halide perovskite nanocrystals(NCs)has severely hindered future practical application.Herein,we proposed a facile and effective ligand modification route to synthesize stable CsPbBr_(3) nanocrystals by introducing a double-terminal ligand,namely 4,4'-Azobis(4-cyanovalericacid)(CA),to replace the conventional oleic acid(OA)ligand at room temperature.The as-synthesized CsPbBr_(3)-CA not only possesses high photoluminescence quantum yield(72%)related to the reduced trap defects,but also shows significantly improved stability exposure to water,ethanol,light,and/or heat benefiting from the CA ligand anchored to NC surfaces tightly.The photoluminescence intensity of CsPbBr_(3)-CA maintains about 80%and 75%of its initial emission intensity after immersed in water or ethanol for 360 min,respectively,whereas that of the CsPbBr_(3)-OA was quenched completely within a few minutes.Moreover,an all-inorganic white light-emitting diode(LED)covered 126%National Television System Committee(NTSC)standard and 92%Rec.2020 standard was fabricated by combining the green CsPbBr_(3)-CA and commercial red-emitting K2SiF6:Mn4+(KSF)phosphors onto a blue LED chip.Thus,the presented work initiates the development of the room temperature preparation of high quality CsPbBr_(3) and shows prospect for next-generation displays. 展开更多
关键词 perovskite nanocrystals ligand modification stability white light-emitting diode
原文传递
Stimulated emission at 1.54 μm from erbium/oxygen-doped silicon-based light-emitting diodes
3
作者 JIN HONG HUIMIN WEN +6 位作者 JIAJING HE JINGQUAN LIU YAPING DAN JENS W.TOMM fangyu yue JUNHAO CHU CHUNGANG DUAN 《Photonics Research》 SCIE EI CAS CSCD 2021年第5期714-721,共8页
Silicon-based light sources, including light-emitting diodes(LEDs) and laser diodes(LDs) for information transmission, are urgently needed for developing monolithic integrated silicon photonics. Silicon with erbium io... Silicon-based light sources, including light-emitting diodes(LEDs) and laser diodes(LDs) for information transmission, are urgently needed for developing monolithic integrated silicon photonics. Silicon with erbium ions(Er^(3+)) doped by ion implantation is considered a promising approach, but it suffers from an extremely low quantum efficiency. Here we report an electrically pumped superlinear emission at 1.54 μm from Er/O-doped silicon planar LEDs, which are produced by applying a new deep cooling process. Stimulated emission at room temperature is realized with a low threshold current of ~6 mA(~0.8 A∕cm^(2)). Time-resolved photoluminescence and photocurrent results have revealed the complex carrier transfer dynamics by relaxing electrons from the Si conduction band to the Er^(3+) ion. This picture differs from the frequently assumed energy transfer via electron–hole pair recombination of the silicon host. Moreover, the amplified emission from the LEDs is likely due to a quasi-continuous Er/O-related donor band created by the deep cooling technique. This work paves the way for fabricating superluminescent diodes or efficient LEDs at communication wavelengths based on rare-earth-doped silicon. 展开更多
关键词 DIODES PUMPED LIGHT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部