This paper focuses on the reducibility of two-dimensional almost periodic system with small perturbation. We use the KAM iterative method to get the reducibility by an almost periodic transformation. The system has be...This paper focuses on the reducibility of two-dimensional almost periodic system with small perturbation. We use the KAM iterative method to get the reducibility by an almost periodic transformation. The system has been reduced to a simple form. So we have dealt with the small perturbation problem of the almost periodic system.展开更多
The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 ...The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.展开更多
The shoot apical meristem(SAM)and root apical meristem(RAM)act as pools of stem cells that give rise to aboveground and underground tissues and organs in higher plants,respectively.The CLAVATA3(CLV3)-WUSCHEL(WUS)negat...The shoot apical meristem(SAM)and root apical meristem(RAM)act as pools of stem cells that give rise to aboveground and underground tissues and organs in higher plants,respectively.The CLAVATA3(CLV3)-WUSCHEL(WUS)negative-feedback loop acts as a core pathway controlling SAM homeostasis,while CLV3/EMBRYO SURROUNDING REGION(ESR)40(CLE40)and WUSCHEL-RELATED HOMEOBOX5(WOX5),homologs of CLV3 and WUS,direct columella stem cell fate.Moreover,CLV3 INSENSITIVE KINASES(CIKs)have been shown to be essential for maintaining SAM homeostasis,whereas whether they regulate the distal root meristem remains to be elucidated.Here,we report that CIKs are indispensable for transducing the CLE40 signal to maintain homeostasis of the distal root meristem.We found that the cik mutant roots displayed disrupted quiescent center and delayed columella stem cell(CSC)differentiation.Biochemical assays demonstrated that CIKs interact with ARABIDOPSIS CRINKLY4(ACR4)in a ligand-independent manner and can be phosphorylated by ACR4 in vitro.In addition,the phosphorylation of CIKs can be rapidly induced by CLE40,which partially depends on ACR4.Although CIKs act as conserved and redundant regulators in the SAM and RAM,our results demonstrated that they exhibit differentiated functions in these meristems.展开更多
Macrophages and osteoclasts are both derived from monocyte/macrophage lineage,which plays as the osteoclastic part of bone metabolism.Although they are regulated by bone implant surface nanoarchitecture and involved i...Macrophages and osteoclasts are both derived from monocyte/macrophage lineage,which plays as the osteoclastic part of bone metabolism.Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration,the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring.Here,the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated.The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure.The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo.Meanwhile,the macrophage recruitment and osteoclast formation are increased and decreased respectively.Mechanistically,the integrin mediated FAK phosphorylation and its downstream MAPK pathway(p-p38)are significantly downregulated by the nanoporous surface,which account for the inhibition of osteoclastogenesis.In addition,the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines,and accelerate bone regeneration by macrophage cytokine profiles.In conclusion,these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment,which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis.展开更多
Background Fast neutron detection is meaningful in many research fields such as space environment monitoring.A scintillating fiber array model for fast neutron detection was proposed and developed in 1980s.Aerospace a...Background Fast neutron detection is meaningful in many research fields such as space environment monitoring.A scintillating fiber array model for fast neutron detection was proposed and developed in 1980s.Aerospace applications of the model require electronics in small size.Purpose To design a dedicated electronic system to readout and process the 384-channel signals from scintillating fiber array,and to use the designed system to fabricate a neutron detector for aerospace applications.Methods With the method of nuclear recoil,fast neutron is detected by tracking recoil proton of n–p scatter in scintillating plastic fibers.Using the peak-holding circuits and multiplexers,the system size and power consumption were reduced.Results The detector fabricated with the designed system,had 34 cm×34 cm×27 cm mechanical size,20.4 kg weight,and 30.05W power consumption.Comparing to traditional waveform sampling electronics,the designed electronics was highly integrated and had a small size.The readout electronics also gave a better energy resolution of 39%in neutron detection,while the energy resolution was 43%in previous version.Conclusion In this study,a highly integrated readout electronic system was designed and verified.The detector using the system gave good performance.The designed electronics had potential development in fast neutron detection and other high energy physics detection system.展开更多
Purpose The performance of CZT inγ-ray and X-ray detection is growing rapidly in these years.However,there are only a few reports on its utilization inαparticle detection.Therefore,to study the properties of CZT for...Purpose The performance of CZT inγ-ray and X-ray detection is growing rapidly in these years.However,there are only a few reports on its utilization inαparticle detection.Therefore,to study the properties of CZT for detection ofαparticle,a detection system has been manufactured,and a series of simulations have been done.Methods A 22×22×0.7mm^(3) planar CZT detector is deployed to detect theαparticles from a radiation source containing Am-241 and Pu-239,while COMSOL MultiPhysics and GEANT4 are employed in the simulation of charge collection and interaction betweenαparticles and CZT.Results An energy resolution of 1.47%FWHM at 5.486MeV and 1.32%at 5.157MeV has been achieved.A simulated spectrum has been created,and it is analogous to the one from experiment.Conclusion The experiment results show the potential of CZT inαdetection.The simulations are confirmed effective and will guide a better design of the detecting system.展开更多
Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+using tetrapropylammonium hydroxide(TPAOH)as a template.The synthesis was followed by a base treatment.The silicalite-1samp...Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+using tetrapropylammonium hydroxide(TPAOH)as a template.The synthesis was followed by a base treatment.The silicalite-1samples were characterized using X-ray diffrac-tion,scanning electron microscopy,N2 adsorption,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy and NH3 temperature-programmed deso-rption.The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime.During the synthesis,the sodium ions were incorporated onto the silicalite-1 crystals,but were then removed by the base treatment.All the catalysts exhibited nearly complete conversion of cyclohexanone oxime toε-caprolactam with selectivities grater than 95%.Addition of less than 2.5 mol-%Na^(+)(relative to TPAOH)did not influence the catalytic properties.However,for Na+concentrations≥5 mol-%,the particle sizes of silicalite-1 increased and the catalytic activities decreased,which can be attributed to carbon deposition.The results in this work are of great importance for the polymer industry.展开更多
文摘This paper focuses on the reducibility of two-dimensional almost periodic system with small perturbation. We use the KAM iterative method to get the reducibility by an almost periodic transformation. The system has been reduced to a simple form. So we have dealt with the small perturbation problem of the almost periodic system.
文摘The hydrogenation of CO to synthetic natural gas (SNG) needs a high molar ratio of H2/CO (usually large than 3.0 in industry), which consumes a large abundant of hydrogen. The reverse dry reforming reaction (RDR, 2H2 + 2CO←→CH4 + CO2), combining CO methanation with water-gas-shift reaction, can significantly decrease the H2/CO molar ratio to 1 for SNG production. A detailed thermodynamic analysis of RDR reaction was carried out based on the Gibbs free energy minimization method. The effect of temperature, pressure. H2/CO ratio and the addition of H2O, CH4, CO2, O2 and C2H4 into the feed gas on CO conversion, CH4 and CO2 selectivity, as well as CH4 and carbon yield, are discussed. Experimental results obtained on homemade impregnated Ni/Al2O3 catalyst are compared with the calculations. The results demonstrate that low temperature (200-500 °C), high pressure (1-5 MPa) and high H2/CO ratio (at least 1) promote CO conversion and CH4 selectivity and decrease carbon yield. Steam and CO2 in the feed gas decrease the CH4 selectivity and carb on yield, and enhance the CO2 con tent. Extra CH4 elevates the CH4 content in the products, but leads to more carbon formation at high temperatures. O2 significantly decreases the CH4 selectivity and C2H4 results in the generation of carbon.
基金the National Natural Science Foundation of China(31770312,31970339,31900166,and 31471402)the 111 Project(B16022)+1 种基金Fundamental Research Funds for the Central Universities(lzujbky-2019-ct04 and lzujbky-2020-kb05)the China Postdoctoral Science Foundation(BX20180133).
文摘The shoot apical meristem(SAM)and root apical meristem(RAM)act as pools of stem cells that give rise to aboveground and underground tissues and organs in higher plants,respectively.The CLAVATA3(CLV3)-WUSCHEL(WUS)negative-feedback loop acts as a core pathway controlling SAM homeostasis,while CLV3/EMBRYO SURROUNDING REGION(ESR)40(CLE40)and WUSCHEL-RELATED HOMEOBOX5(WOX5),homologs of CLV3 and WUS,direct columella stem cell fate.Moreover,CLV3 INSENSITIVE KINASES(CIKs)have been shown to be essential for maintaining SAM homeostasis,whereas whether they regulate the distal root meristem remains to be elucidated.Here,we report that CIKs are indispensable for transducing the CLE40 signal to maintain homeostasis of the distal root meristem.We found that the cik mutant roots displayed disrupted quiescent center and delayed columella stem cell(CSC)differentiation.Biochemical assays demonstrated that CIKs interact with ARABIDOPSIS CRINKLY4(ACR4)in a ligand-independent manner and can be phosphorylated by ACR4 in vitro.In addition,the phosphorylation of CIKs can be rapidly induced by CLE40,which partially depends on ACR4.Although CIKs act as conserved and redundant regulators in the SAM and RAM,our results demonstrated that they exhibit differentiated functions in these meristems.
基金supported by National Natural Science Foundation of China(81530051,31800790 and 32071324)Young Talent Fund of University Association for Science and Technology in Shaanxi,China(20190304).
文摘Macrophages and osteoclasts are both derived from monocyte/macrophage lineage,which plays as the osteoclastic part of bone metabolism.Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration,the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring.Here,the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated.The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure.The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo.Meanwhile,the macrophage recruitment and osteoclast formation are increased and decreased respectively.Mechanistically,the integrin mediated FAK phosphorylation and its downstream MAPK pathway(p-p38)are significantly downregulated by the nanoporous surface,which account for the inhibition of osteoclastogenesis.In addition,the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines,and accelerate bone regeneration by macrophage cytokine profiles.In conclusion,these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment,which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis.
基金This work was supported by the Ministry of Science and Technology of China(2013YQ03062902)CAS pilot strategic science and technology projects(XDA14020502)the National Natural Science Foundation of China(U1332202).
文摘Background Fast neutron detection is meaningful in many research fields such as space environment monitoring.A scintillating fiber array model for fast neutron detection was proposed and developed in 1980s.Aerospace applications of the model require electronics in small size.Purpose To design a dedicated electronic system to readout and process the 384-channel signals from scintillating fiber array,and to use the designed system to fabricate a neutron detector for aerospace applications.Methods With the method of nuclear recoil,fast neutron is detected by tracking recoil proton of n–p scatter in scintillating plastic fibers.Using the peak-holding circuits and multiplexers,the system size and power consumption were reduced.Results The detector fabricated with the designed system,had 34 cm×34 cm×27 cm mechanical size,20.4 kg weight,and 30.05W power consumption.Comparing to traditional waveform sampling electronics,the designed electronics was highly integrated and had a small size.The readout electronics also gave a better energy resolution of 39%in neutron detection,while the energy resolution was 43%in previous version.Conclusion In this study,a highly integrated readout electronic system was designed and verified.The detector using the system gave good performance.The designed electronics had potential development in fast neutron detection and other high energy physics detection system.
文摘Purpose The performance of CZT inγ-ray and X-ray detection is growing rapidly in these years.However,there are only a few reports on its utilization inαparticle detection.Therefore,to study the properties of CZT for detection ofαparticle,a detection system has been manufactured,and a series of simulations have been done.Methods A 22×22×0.7mm^(3) planar CZT detector is deployed to detect theαparticles from a radiation source containing Am-241 and Pu-239,while COMSOL MultiPhysics and GEANT4 are employed in the simulation of charge collection and interaction betweenαparticles and CZT.Results An energy resolution of 1.47%FWHM at 5.486MeV and 1.32%at 5.157MeV has been achieved.A simulated spectrum has been created,and it is analogous to the one from experiment.Conclusion The experiment results show the potential of CZT inαdetection.The simulations are confirmed effective and will guide a better design of the detecting system.
文摘Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+using tetrapropylammonium hydroxide(TPAOH)as a template.The synthesis was followed by a base treatment.The silicalite-1samples were characterized using X-ray diffrac-tion,scanning electron microscopy,N2 adsorption,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy and NH3 temperature-programmed deso-rption.The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime.During the synthesis,the sodium ions were incorporated onto the silicalite-1 crystals,but were then removed by the base treatment.All the catalysts exhibited nearly complete conversion of cyclohexanone oxime toε-caprolactam with selectivities grater than 95%.Addition of less than 2.5 mol-%Na^(+)(relative to TPAOH)did not influence the catalytic properties.However,for Na+concentrations≥5 mol-%,the particle sizes of silicalite-1 increased and the catalytic activities decreased,which can be attributed to carbon deposition.The results in this work are of great importance for the polymer industry.