The exploration of high-efficiency,long-durability,and cost-effectiveness transition metal doped carbon materials to replace the commercial Pt/C in oxygen reduction reaction(ORR)is greatly desirable for promoting the ...The exploration of high-efficiency,long-durability,and cost-effectiveness transition metal doped carbon materials to replace the commercial Pt/C in oxygen reduction reaction(ORR)is greatly desirable for promoting the advancement of sustainable energy devices.Herein,the Fe_(3)N and FeCo alloy decorated N-doped carbon hybrid material(denoted Fe_(3)N-FeCo@NC)is prepared and applied as the ORR catalyst,which is derived from the two-step pyrolysis of an intriguing complex consisted of metal-coordinated porous polydopamine(PDA)nanospheres(i.e.,Fe-PDA@Co)and melamine.The resulting Fe_(3)N-FeCo@NC delivers outstanding ORR activity with an onset potential(E_(on))of 1.05 V,a half-wave potential(E_(1/2))of 0.89 V,as well as excellent long-term stability and methanol resistance over Pt/C.Interestingly,the home-made Zn-air battery with Fe_(3)N-FeCo@NC as the air-cathode demonstrates much higher open-circuit voltage(1.50 vs.1.48 V),power density(141 vs.113 mW·cm^(−2))and specific capacity(806.6 vs.660.6 mAh·g^(−1)_(Zn))than those of Pt/C counterpart.Such a remarkable ORR activity of Fe_(3)N-FeCo@NC may stem from the synergistic effect of Fe_(3)N and FeCo active species,the large surface area,the hierarchical porous structure and the exceptional sphere/sheet hybridized architecture.展开更多
基金upported by the National Natural Science Foundation of China(No.52173207)the Natural Science Foundation of Hunan Province(Nos.2022JJ30563,2020JJ5542)the Outstanding Youth Fund Project of Hunan Provincial Department of Education(No.21B0119).
文摘The exploration of high-efficiency,long-durability,and cost-effectiveness transition metal doped carbon materials to replace the commercial Pt/C in oxygen reduction reaction(ORR)is greatly desirable for promoting the advancement of sustainable energy devices.Herein,the Fe_(3)N and FeCo alloy decorated N-doped carbon hybrid material(denoted Fe_(3)N-FeCo@NC)is prepared and applied as the ORR catalyst,which is derived from the two-step pyrolysis of an intriguing complex consisted of metal-coordinated porous polydopamine(PDA)nanospheres(i.e.,Fe-PDA@Co)and melamine.The resulting Fe_(3)N-FeCo@NC delivers outstanding ORR activity with an onset potential(E_(on))of 1.05 V,a half-wave potential(E_(1/2))of 0.89 V,as well as excellent long-term stability and methanol resistance over Pt/C.Interestingly,the home-made Zn-air battery with Fe_(3)N-FeCo@NC as the air-cathode demonstrates much higher open-circuit voltage(1.50 vs.1.48 V),power density(141 vs.113 mW·cm^(−2))and specific capacity(806.6 vs.660.6 mAh·g^(−1)_(Zn))than those of Pt/C counterpart.Such a remarkable ORR activity of Fe_(3)N-FeCo@NC may stem from the synergistic effect of Fe_(3)N and FeCo active species,the large surface area,the hierarchical porous structure and the exceptional sphere/sheet hybridized architecture.