期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
利用CRISPR/Cas9慢病毒系统构建肺部EZH2基因敲除小鼠 被引量:3
1
作者 孟凡荣 赵丹 +1 位作者 周清华 刘喆 《中国肺癌杂志》 CAS CSCD 北大核心 2018年第5期358-364,共7页
背景与目的已有的研究证明CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9)系统是一种能够在哺乳动物细胞中高效操作的新型基因编辑技术,应用人工设计的向导RNA(single-guide RNA,sgRNA)... 背景与目的已有的研究证明CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9)系统是一种能够在哺乳动物细胞中高效操作的新型基因编辑技术,应用人工设计的向导RNA(single-guide RNA,sgRNA)介导外源表达的Cas9蛋白与靶点DNA特异性结合以实现对基因组DNA的切割,被切割后的基因组DNA通过非同源重组或同源重组的方式进行修复,从而实现基因的敲除、或者外源基因的敲入等目标。本研究的目的是应用CRISPR/Cas9技术构建小鼠肺部EZH2基因敲除的动物模型。方法针对EZH2基因的编码区,设计两个靶向EZH2基因Exon3和Exon4的sgRNA,通过慢病毒包装、感染细胞、SURVEYOR assay等一系列体外实验,验证所设计的sgRNA的有效性。应用支气管插管的方式把慢病毒灌注到小鼠肺部,利用免疫组化方法和qRT-PCR进行检测。结果 NIH-3T3细胞的体外实验结果验证了实验所设计的sgEZH2能够有效地在体外细胞系中介导Cas9切割靶DNA;小鼠支气管插管实验及肺部组织免疫组化和qRT-PCR方法检测EZH2基因敲除的效率,发现实验组小鼠肺部组织EZH2表达明显降低。结论本研究成功设计了两条能够敲除EZH2功能的sgRNA,并应用CRISPR/Cas9技术成功建立了肺部EZH2基因敲除的小鼠模型,为研究EZH2的功能和作用机制提供了有效的动物模型。 展开更多
关键词 CRISPR/Cas9系统 EZH2 sgRNA 基因敲除
下载PDF
A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants 被引量:8
2
作者 Ting Peng mengmeng Qiao +26 位作者 Haiping Liu Sachin Teotia Zhanhui Zhang Yafan Zhao Bobo Wang Dongjie Zhao Lina Shi Cui Zhang Brandon Le Kestrel Rogers Chathura Gunasekara Haitang Duan Yiyou Gu Lei Tian Jinfu Nie Jian Qi fanrong meng Lan Huang Qinghui Chen Zhenlin Wang Jinshan Tang Xiaoqing Tang Ting Lan Xuemei Chen Hairong Wei Quanzhi Zhao Guiliang Tang 《Molecular Plant》 SCIE CAS CSCD 2018年第11期1400-1417,共18页
microRNAs (miRNAs)are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression,leading to gene silencing.We previously developed short tandem target mimic (STTM)... microRNAs (miRNAs)are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression,leading to gene silencing.We previously developed short tandem target mimic (STTM)technology to deactivate endogenous miRNAs in Arabidopsis.Here,we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis,tomato,rice,and maize,providing a resource for the functional interrogation of miRNAs.We not only revealed the functions of several miRNAs in plant development,but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development.RNA-seq and small RNAseq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation,secondary metabolism,and ion-channel activity-associated electrophysiology,demonstrating that STTM technology is an effective approach for studying miRNA functions.To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks,we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTMinduced miRNA knockdown plants. 展开更多
关键词 SHORT TANDEM TARGET MIMIC (STTM) miRNA RNA-seq Arabidopsis CROP
原文传递
Relation Classification via Recurrent Neural Network with Attention and Tensor Layers 被引量:11
3
作者 Runyan Zhang fanrong meng +1 位作者 Yong Zhou Bing Liu 《Big Data Mining and Analytics》 2018年第3期234-244,共11页
Relation classification is a crucial component in many Natural Language Processing(NLP) systems. In this paper, we propose a novel bidirectional recurrent neural network architecture(using Long Short-Term Memory,LSTM,... Relation classification is a crucial component in many Natural Language Processing(NLP) systems. In this paper, we propose a novel bidirectional recurrent neural network architecture(using Long Short-Term Memory,LSTM, cells) for relation classification, with an attention layer for organizing the context information on the word level and a tensor layer for detecting complex connections between two entities. The above two feature extraction operations are based on the LSTM networks and use their outputs. Our model allows end-to-end learning from the raw sentences in the dataset, without trimming or reconstructing them. Experiments on the SemEval-2010 Task 8dataset show that our model outperforms most state-of-the-art methods. 展开更多
关键词 semantic relation classification BIDIRECTIONAL RECURRENT NEURAL Network(RNNs) ATTENTION mechanism NEURAL TENSOR networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部