Poverty alleviation needs developing the industries related to the economic income.Only when the industry develops,can the income of the poverty-stricken people be increased fundamentally,accordingly help eradicate th...Poverty alleviation needs developing the industries related to the economic income.Only when the industry develops,can the income of the poverty-stricken people be increased fundamentally,accordingly help eradicate the poverty from the root cause.Compared with other industries,the animal husbandry industry has unique advantages for poverty alleviation and assistance in poverty alleviation.The animal husbandry breeding industry is characterized by short breeding time,relatively high economic income,and farmers do not need a high educational level,so the breeding threshold is low.For poverty-stricken farmers,this is a feasible way to help them get rid of poverty.Combined with the experience of poverty alleviation through developing the animal husbandry industry,this paper discussed the development advantages of the animal husbandry industry in poverty alleviation,analyzed the main ways of exerting and applying the advantages.It is intended to provide a certain reference for the targeted poverty alleviation through developing the animal husbandry industry.展开更多
Arsenic(As)is a cancerogenic metalloid ubiquitously distributed in the environment,which can be easily accumulated in food crops like rice.Jasmonic acid(JA)and its derivatives play critical roles in plant growth and s...Arsenic(As)is a cancerogenic metalloid ubiquitously distributed in the environment,which can be easily accumulated in food crops like rice.Jasmonic acid(JA)and its derivatives play critical roles in plant growth and stress response.However,the role of endogenous JA in As accumulation and detoxification is still poorly understood.In this study,we found that JA biosynthesis enzymes Allene Oxide Synthases,OsAOS1 and OsAOS2,regulate As accumulation and As tolerance in rice.Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae(e.g.the basal lineage Klebsormidium flaccidum)-sister clade of land plants.Compared to other two AOSs,OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot.Loss-of-function of OsAOS1(osaos1-1)showed elevated As concentration in grains,which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate[As(Ⅴ)]but not arsenite[As(Ⅲ)].However,the mutation of OsAOS2(osaos2-1)showed no such effect.Moreover,osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(Ⅴ)and As(Ⅲ).Disrupted expression of genes involved in As accumulation and detoxification,such as OsPT4,OsNIP3;2,and OsOASTL-A1,was observed in both osaos1-1 and osaos2-1 mutant lines.In addition,a As(Ⅴ)-induced significant decrease in Reactive Oxygen Species(ROS)production was observed in the root of osaos1-1 but not in osaos2-1.Taken together,our results indicate OsAOS1 modulates both As allocation and detoxification,which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.展开更多
A new alkaloid, methyl 6-(isoprenyl)-lH-indole-3-carboxylate (1), was isolated from the solid culture broth of fungus Chaetomium globosum, together with five known compounds, including N-acetyl-L-tryptophan (2),...A new alkaloid, methyl 6-(isoprenyl)-lH-indole-3-carboxylate (1), was isolated from the solid culture broth of fungus Chaetomium globosum, together with five known compounds, including N-acetyl-L-tryptophan (2), xylariol B (3), 5-(methoxymethyl)- 1H-pyrrole-2-carbaldehyde (4), ergosterol (5) and ergosta-4,6,8(14),22-tetraen-3-one (6). Their chemical structures were elucidated by spectroscopic data (UV, IR, HRESIMS, and NMR). In addition, it is the first report of compounds 2 and 3 from the fungus Chaetomium globosum.展开更多
In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membrane...In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membranes with or without 3%(in mole)Y_(2)O_(3) stable ZrO_(2)(3YSZ)support were prepared and tested as oxygen separation membranes.Then,the oxygen transmission performance was tested by the electrochemical method based on the limiting current.The results obtained with this method coincide with those acquired by means of gas chromatography.Furthermore,the dependences of oxygen permeation rate on oxygen partial pressure,temperature and ceramic membrane thickness were analyzed.When air was used as the sweeping gas on the porous 3YSZ supported SDC-LSCrF dual-phase membrane,the oxygen permeation rate can reach 0.73,0.82,0.90 and 0.97 mL cm^(-2) min^(-1) at 650,700,750 and 800℃,respectively.展开更多
基金Supported by 2017 Key Project of Social Science Fund of Hengyang City in Hunan Province"Study of Targeted Poverty Alleviation Path through Developing Animal Husbandry Industry in Hengyang City"(2017B(I)010)2020 Hunan Polytechnic of Environment and Biology Serving Agricultural and Forestry Enterprise Cooperation Project of Shigu District in Hengyang City(SF2020-01).
文摘Poverty alleviation needs developing the industries related to the economic income.Only when the industry develops,can the income of the poverty-stricken people be increased fundamentally,accordingly help eradicate the poverty from the root cause.Compared with other industries,the animal husbandry industry has unique advantages for poverty alleviation and assistance in poverty alleviation.The animal husbandry breeding industry is characterized by short breeding time,relatively high economic income,and farmers do not need a high educational level,so the breeding threshold is low.For poverty-stricken farmers,this is a feasible way to help them get rid of poverty.Combined with the experience of poverty alleviation through developing the animal husbandry industry,this paper discussed the development advantages of the animal husbandry industry in poverty alleviation,analyzed the main ways of exerting and applying the advantages.It is intended to provide a certain reference for the targeted poverty alleviation through developing the animal husbandry industry.
基金financially supported by the National Natural Science Foundation of China(32170276,32001456,32370285)Major International(Regional)Joint Research Project from NSFC-ASRT(32061143044)+2 种基金the Hubei Hongshan Laboratory(2021hskf004)funded by Australian Research Council(FT210100366),Grains Research&Development Corporation(WSU2303-001RTX)Horticulture Innovation Australia(LP18000).
文摘Arsenic(As)is a cancerogenic metalloid ubiquitously distributed in the environment,which can be easily accumulated in food crops like rice.Jasmonic acid(JA)and its derivatives play critical roles in plant growth and stress response.However,the role of endogenous JA in As accumulation and detoxification is still poorly understood.In this study,we found that JA biosynthesis enzymes Allene Oxide Synthases,OsAOS1 and OsAOS2,regulate As accumulation and As tolerance in rice.Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae(e.g.the basal lineage Klebsormidium flaccidum)-sister clade of land plants.Compared to other two AOSs,OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot.Loss-of-function of OsAOS1(osaos1-1)showed elevated As concentration in grains,which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate[As(Ⅴ)]but not arsenite[As(Ⅲ)].However,the mutation of OsAOS2(osaos2-1)showed no such effect.Moreover,osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(Ⅴ)and As(Ⅲ).Disrupted expression of genes involved in As accumulation and detoxification,such as OsPT4,OsNIP3;2,and OsOASTL-A1,was observed in both osaos1-1 and osaos2-1 mutant lines.In addition,a As(Ⅴ)-induced significant decrease in Reactive Oxygen Species(ROS)production was observed in the root of osaos1-1 but not in osaos2-1.Taken together,our results indicate OsAOS1 modulates both As allocation and detoxification,which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.
基金National Natural Science Foundation of China(Grant No.31570361)
文摘A new alkaloid, methyl 6-(isoprenyl)-lH-indole-3-carboxylate (1), was isolated from the solid culture broth of fungus Chaetomium globosum, together with five known compounds, including N-acetyl-L-tryptophan (2), xylariol B (3), 5-(methoxymethyl)- 1H-pyrrole-2-carbaldehyde (4), ergosterol (5) and ergosta-4,6,8(14),22-tetraen-3-one (6). Their chemical structures were elucidated by spectroscopic data (UV, IR, HRESIMS, and NMR). In addition, it is the first report of compounds 2 and 3 from the fungus Chaetomium globosum.
基金The financial support from the National Natural Science Foundation of China(No.51672297 and No.51836004)is highly appreciated.
文摘In this study,with La_(0.8)Sr_(0.2)Cr_(0.5)Fe_(0.5)O_(3-δ)(LSCrF)and Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)taken as the electronic conducting phase and the oxide ion conductor,respectively,dual-phase composite ceramic membranes with or without 3%(in mole)Y_(2)O_(3) stable ZrO_(2)(3YSZ)support were prepared and tested as oxygen separation membranes.Then,the oxygen transmission performance was tested by the electrochemical method based on the limiting current.The results obtained with this method coincide with those acquired by means of gas chromatography.Furthermore,the dependences of oxygen permeation rate on oxygen partial pressure,temperature and ceramic membrane thickness were analyzed.When air was used as the sweeping gas on the porous 3YSZ supported SDC-LSCrF dual-phase membrane,the oxygen permeation rate can reach 0.73,0.82,0.90 and 0.97 mL cm^(-2) min^(-1) at 650,700,750 and 800℃,respectively.