The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northe...The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northern Sulu Orogen are not well-constrained.This study reports zircon U-Pb ages and Hf isotopes of these rocks from the Liansandao area.Three meta-igneous rock samples give similar weighted mean 206 Pb/238 U ages of 744±11,767±12,and 762±15 Ma,respectively,indicating the Neoproterozoic crystallization ages.These rocks formed coevally with the Wulian and Yangkou intrusions that located along the Yantai-Qingdao-Wulian fault zone.The Neoproterozoic ages indicate that the meta-igneous rocks from the Liansandao area have affinity to the Yangtze Block.The three samples haveεHf(t)values of-7.2–-10.5,-6.0–-17.5,and-6.8–-12.0,respectively.These negativeεHf(t)values indicate a primarily crustal source.However,the widely variousεHf(t)values that are higher than the continental crust,suggesting magma mixing between mantle-derived materials and the continental crust or source heterogeneity.Combined with the Hf model ages and geochemical characteristics,the monzodiorite(sample LSD-2)is most likely to be mantle-derived magma then interacted with ancient continental crust,and the granitic protolith(samples LSD-1 and LSD-3)in the Liansandao area might derive from the re-melting of a Paleoproterozoic continental crust at^750 Ma,resulting from the upwelling and underplating of mantle-derived magma formed in an extensional setting due to the break-up of the Rodinia supercontinent.展开更多
This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin...This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin of the Eastern Block of the North China Craton(NCC).Six of the eight studied xenolith samples plot significantly above the terrestrial Hf-Nd isotopic array and haveεHf(0)value up to+60.All the samples define a well correlated 147 Sm/144 Nd-143 Nd/144 Nd age of 2081 Ma,which is considered to record the granulite-facies metamorphism.In contrast,the Lu-Hf isotope system faithfully records the protolith information.The mineralogical assemblage,especially garnet and/or zircon(rutile to some extent)mainly controlled the decoupling of Hf-Nd isotope.The metamorphic modification on protolith characteristics and the differences in element mobility during metamorphism may also reinforce the observed decoupling between the Sm-Nd and Lu-Hf isotope systems;i.e.,the absence of the correlations inεNd-εHf and also 87 Sr/86 Sr-143 Nd/144 Nd diagram.The Lu/Hf isochron age of 2424 Ma is similar to the zircon age peak of the studied xenoliths and the dominant age of NCC basement,indicating that the igneous protolith has an affinity to the Archean basement of the NCC.Furthermore,the positiveεHf(t)values at 2500 Ma indicate a crustal growth event of 2500 Ma in the NCC.展开更多
基金financially supported by the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM201902)the National Natural Science Foundation of China (Nos. 41472155,41876037)+2 种基金the Scientific and Technological Innovation Project of the China Ocean Mineral Resources R & D Association (No. DY135-N2-1-04)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2016RCJJ008)the SDUST Research Fund (No. 2015TDJH101).
文摘The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northern Sulu Orogen are not well-constrained.This study reports zircon U-Pb ages and Hf isotopes of these rocks from the Liansandao area.Three meta-igneous rock samples give similar weighted mean 206 Pb/238 U ages of 744±11,767±12,and 762±15 Ma,respectively,indicating the Neoproterozoic crystallization ages.These rocks formed coevally with the Wulian and Yangkou intrusions that located along the Yantai-Qingdao-Wulian fault zone.The Neoproterozoic ages indicate that the meta-igneous rocks from the Liansandao area have affinity to the Yangtze Block.The three samples haveεHf(t)values of-7.2–-10.5,-6.0–-17.5,and-6.8–-12.0,respectively.These negativeεHf(t)values indicate a primarily crustal source.However,the widely variousεHf(t)values that are higher than the continental crust,suggesting magma mixing between mantle-derived materials and the continental crust or source heterogeneity.Combined with the Hf model ages and geochemical characteristics,the monzodiorite(sample LSD-2)is most likely to be mantle-derived magma then interacted with ancient continental crust,and the granitic protolith(samples LSD-1 and LSD-3)in the Liansandao area might derive from the re-melting of a Paleoproterozoic continental crust at^750 Ma,resulting from the upwelling and underplating of mantle-derived magma formed in an extensional setting due to the break-up of the Rodinia supercontinent.
基金supported by the National Natural Science Foundation of China (Nos. 41876037,41273013)the SDUST Research Fund (No. 2015TDJH101)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Nos. 2016RCJJ008 and 2015RCJJ012)the Shandong Provincial Natural Science Foundation of China (No. ZR2019PD017)
文摘This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin of the Eastern Block of the North China Craton(NCC).Six of the eight studied xenolith samples plot significantly above the terrestrial Hf-Nd isotopic array and haveεHf(0)value up to+60.All the samples define a well correlated 147 Sm/144 Nd-143 Nd/144 Nd age of 2081 Ma,which is considered to record the granulite-facies metamorphism.In contrast,the Lu-Hf isotope system faithfully records the protolith information.The mineralogical assemblage,especially garnet and/or zircon(rutile to some extent)mainly controlled the decoupling of Hf-Nd isotope.The metamorphic modification on protolith characteristics and the differences in element mobility during metamorphism may also reinforce the observed decoupling between the Sm-Nd and Lu-Hf isotope systems;i.e.,the absence of the correlations inεNd-εHf and also 87 Sr/86 Sr-143 Nd/144 Nd diagram.The Lu/Hf isochron age of 2424 Ma is similar to the zircon age peak of the studied xenoliths and the dominant age of NCC basement,indicating that the igneous protolith has an affinity to the Archean basement of the NCC.Furthermore,the positiveεHf(t)values at 2500 Ma indicate a crustal growth event of 2500 Ma in the NCC.