In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross b...In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross between the varieties Hanxuan 10 (HX) and Lumai 14 (LM). The senescence parameters chlorophyll content (Chl a+b, Chl a, and Chl b), original fluorescence (Fo), maximum fluorescence level (Fm), maximum photochemical efficiency (FvlFm), and ratio of variable fluorescence to original fluorescence (FvlFo) were evaluated in the second leaf of whole three-leaf seedlings subjected to 7 d of darkness. A total of 43 QTLs were identified that were associated with dark-induced senescence using composite interval mapping. These QTLs were mapped to 20 loci distributed on 11 chromosomes: 1B, 1D, 2A, 2B, 3B, 3D, 5D, 6A, 6B, 7A, and 7B. The phenotypic variation explained by each QTL ranged from 7.5% to 19.4%. Eleven loci coincided with two or more of the analyzed parameters. In addition, 14 loci co-located or were linked with previously reported QTLs regulating flag leaf senescence, tolerance to high light stress, and grain protein content (Gpc), separately.展开更多
基金supported by the National Basic Research Program of China (2009CB118506 and 2009CB118300)the National Natural Science Foundation of China (30800683)the Knowledge Innovation Program Key Project from the Chinese Academy of Sciences (KSCX1-YW-03 and KSCX2-EW-N-02)
文摘In order to explore the genetics of dark-induced senescence in winter wheat (Triticum aestivum L.), a quantitative trait loci (QTL) analysis was carried out in a doubled haploid population developed from a cross between the varieties Hanxuan 10 (HX) and Lumai 14 (LM). The senescence parameters chlorophyll content (Chl a+b, Chl a, and Chl b), original fluorescence (Fo), maximum fluorescence level (Fm), maximum photochemical efficiency (FvlFm), and ratio of variable fluorescence to original fluorescence (FvlFo) were evaluated in the second leaf of whole three-leaf seedlings subjected to 7 d of darkness. A total of 43 QTLs were identified that were associated with dark-induced senescence using composite interval mapping. These QTLs were mapped to 20 loci distributed on 11 chromosomes: 1B, 1D, 2A, 2B, 3B, 3D, 5D, 6A, 6B, 7A, and 7B. The phenotypic variation explained by each QTL ranged from 7.5% to 19.4%. Eleven loci coincided with two or more of the analyzed parameters. In addition, 14 loci co-located or were linked with previously reported QTLs regulating flag leaf senescence, tolerance to high light stress, and grain protein content (Gpc), separately.