期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Advances in statistical mechanics of rock masses and its engineering applications 被引量:10
1
作者 faquan wu Jie wu +3 位作者 Han Bao Bo Li Zhigang Shan Deheng Kong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期22-45,共24页
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas... To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses. 展开更多
关键词 Statistical mechanics of rock masses(SMRM) Jointed rock mass Geometric probability model Failure probability Anisotropic constitutive model Engineering parameters
下载PDF
Phenomena and theoretical analysis for the failure of brittle rocks 被引量:5
2
作者 faquan wu Jie wu Shengwen Qi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期331-337,共7页
Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based o... Rockburst, an unstable failure of brittle rocks, has been greatly concerned in rock mechanics and rock engineering for more than 100 years. The current understanding on the mechanical mechanism of rockburst is based on the Coulomb theory, i.e. compressive-shear failure theory. This paper illustrates a series of tensile and tensile-shear fracture phenomena of rockburst, and proposes a methodology for the analysis of fracture mode and its energy dissipation process based on Griffith theory. It is believed that: (1) the fracture modes of rockburst should include compressive-shear, tensile-shear and pure tensile failures; (2) the rupture angle of rock mass decreases with the occurrence of tensile stress; (3) the proportion of kinetic energy in the released strain energy from a rockburst may be much larger than that transferred into surface energy; and (4) the understanding on the tensile and tensile-shear failure modes of rockburst may change the basic thinking of rockburst control, i.e. from keeping the reduction in initial compressive stress σ3 to restricting the creation of secondary tensile stress. 展开更多
关键词 failure of brittle rock tensile-shear fracture Griffith criterion released strain energy kinetic energy
下载PDF
Rapid intelligent evaluation method and technology for determining engineering rock mass quality 被引量:3
3
作者 faquan wu Jie wu +13 位作者 Han Bao Zhongxi Bai Lei Qiao Fang Zhang Bo Li Fuan Si Lei Yu Shenggong Guan Peng Sha Deheng Kong Zhenzhong Dai Kun Chen Yun Tian Changqing Liu 《Rock Mechanics Bulletin》 2023年第2期1-19,共19页
The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in... The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization. 展开更多
关键词 Engineering rock mass Non-contact measurement Backpack laboratory Cloud computing Rapid intelligent evaluation for rock mass quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部