Previously, we demonstrated that a plant steroid, diosgenin, altered cell cycle distribution and induced apoptosis in the human osteosarcoma 1547 cell line. The objective of this study was to investigate if the antipr...Previously, we demonstrated that a plant steroid, diosgenin, altered cell cycle distribution and induced apoptosis in the human osteosarcoma 1547 cell line. The objective of this study was to investigate if the antiproliferative effect of diosgenin was similar for different human cancer cell lines such as laryngocarcinoma HEp-2 and melanoma M4Beu cells. Moreover, this work essentially focused on the mitochondrial pathway. We found that diosgenin had an important and similar antiproliferative effect on different types of cancer cells. In addition, our new results show that diosgenininduced apoptosis is caspase-3 dependent with a fall of mitochondrial membrane potential, nuclear localization of AIF and poly (ADP-ribose) polymerase cleavage. Diosgenin treatment also induces p53 activation and cell cycle arrest in the different cell lines studied.展开更多
文摘Previously, we demonstrated that a plant steroid, diosgenin, altered cell cycle distribution and induced apoptosis in the human osteosarcoma 1547 cell line. The objective of this study was to investigate if the antiproliferative effect of diosgenin was similar for different human cancer cell lines such as laryngocarcinoma HEp-2 and melanoma M4Beu cells. Moreover, this work essentially focused on the mitochondrial pathway. We found that diosgenin had an important and similar antiproliferative effect on different types of cancer cells. In addition, our new results show that diosgenininduced apoptosis is caspase-3 dependent with a fall of mitochondrial membrane potential, nuclear localization of AIF and poly (ADP-ribose) polymerase cleavage. Diosgenin treatment also induces p53 activation and cell cycle arrest in the different cell lines studied.