Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of opt...The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of optical fibers under static and cyclic loadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pre-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.展开更多
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.
文摘The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of optical fibers under static and cyclic loadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pre-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.