期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hyperspectral anomaly detection:a performance comparison of existing techniques 被引量:2
1
作者 Noman Raza Shah Abdur Rahman M.Maud +4 位作者 farrukh aziz bhatti Muhammad Khizer Ali Khurram Khurshid Moazam Maqsood Muhammad Amin 《International Journal of Digital Earth》 SCIE EI 2022年第1期2078-2125,共48页
Anomaly detection in Hyperspectral Imagery(HSI)has received considerable attention because of its potential application in several areas.Numerous anomaly detection algorithms for HSI have been proposed in the literatu... Anomaly detection in Hyperspectral Imagery(HSI)has received considerable attention because of its potential application in several areas.Numerous anomaly detection algorithms for HSI have been proposed in the literature;however,due to the use of different datasets in previous studies,an extensive performance comparison of these algorithms is missing.In this paper,an overview of the current state of research in hyperspectral anomaly detection is presented by broadly dividing all the previously proposed algorithms into eight different categories.In addition,this paper presents the most comprehensive comparative analysis to-date in hyperspectral anomaly detection by evaluating 22 algorithms on 17 different publicly available datasets.Results indicate that attribute and edge-preserving filtering-based detection(AED),local summation anomaly detection based on collaborative representation and inverse distance weight(LSAD-CR-IDW)and local summation unsupervised nearest regularized subspace with an outlier removal anomaly detector(LSUNRSORAD)perform better as indicated by the mean and median values of area under the receiver operating characteristic(ROC)curves.Finally,this paper studies the effect of various dimensionality reduction techniques on anomaly detection.Results indicate that reducing the number of components to around 20 improves the performance;however,any further decrease deteriorates the performance. 展开更多
关键词 Anomaly detection algorithms hyperspectral imagery deep learning dimensionality reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部