期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于强化学习的自主式水下潜器障碍规避技术(英文) 被引量:5
1
作者 Prashant Bhopale faruk kazi Navdeep Singh 《Journal of Marine Science and Application》 CSCD 2019年第2期228-238,共11页
Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the mod... Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems. 展开更多
关键词 OBSTACLE AVOIDANCE Autonomous UNDERWATER vehicle REINFORCEMENT learning Q-LEARNING Function APPROXIMATION
下载PDF
Deep-fake video detection approaches using convolutional–recurrent neural networks
2
作者 Shraddha Suratkar Sayali Bhiungade +3 位作者 Jui Pitale Komal Soni Tushar Badgujar faruk kazi 《Journal of Control and Decision》 EI 2023年第2期198-214,共17页
Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural ... Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural networks employed for Deep-Fake video detection.In the model,the features from the training data are extracted with the intended Convolution Neural Network model to form feature vectors which are further analysed using a dense layer,a Long Short-Term Memoryand Gated Recurrent by adopting transfer learning with fine tuning for training the models.The model is evaluated to detect Artificial Intelligence based Deep fakes images and videos using benchmark datasets.Comparative analysis shows that the detections are majorly biased towards domain of the dataset but there is a noteworthy improvement in the model performance parameters by using Transfer Learning whereas Convolutional-Recurrent Neural Network has benefits in sequence detection. 展开更多
关键词 Deep-FAKES Convolution Neural Network(CNN) Generator Adversarial Network(GAN) Auto encoders Recurrent Neural Network(RNN) Long Short-Term Memory(LSTM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部