The processes of photocatalytic CO_(2) reduction(pCO_(2)R)and electrochemical CO_(2) reduction(ECO_(2)R)have attracted considerable interest owing to their high potential to address many environmental and energy-relat...The processes of photocatalytic CO_(2) reduction(pCO_(2)R)and electrochemical CO_(2) reduction(ECO_(2)R)have attracted considerable interest owing to their high potential to address many environmental and energy-related issues.In this aspect,a single Cu atom decorated on a carbon nitride(CN)surface(Cu-CN)has gained increasing popularity because of its unique advantages,such as excellent atom utilization and ultrahigh catalytic activity.CN-particularly graphitic CN(g-C_(3)N_(4))-is a photo-and electrocatalyst and used as an important support material for single Cu atom-based catalysts.These key functions of Cu-CN-based catalysts can improve the catalytic performance and stability in the pCO_(2)R and ECO_(2)R during the application process.In this review,we focus on Cu as a single metal atom decorated on CN for efficient photoelectrochemical CO_(2) reduction(pECO_(2)R),where ECO_(2)R increases the electrocatalytic active area and promotes electron transfer,while pCO_(2)R enhances the surface redox reaction by efficiently using photogenerated charges and offering integral activity as well as an active interface between Cu and CN.Interactions of single Cu atom-based photo-,electro-,and photoelectrochemical catalysts with g-C_(3)N_(4) are discussed.Moreover,for a deeper understanding of the history of the development of pCO_(2)R and ECO_(2)R,the basics of CO_(2) reduction,including pCO_(2)R and ECO_(2)R over g-C_(3)N_(4),as well as the structural composition,characterization,unique design,and mechanism of a single atom site are reviewed in detail.Finally,some future prospects and key challenges are discussed.展开更多
基金This work was supported by the“Scientific and Technical Innovation Action Plan”Basic Research Field of Shanghai Science and Technology Committee(No.19JC1410500)the National Natural Science Foundation of China(No.91645110)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(No.CUSF-DH-D-2021036).
文摘The processes of photocatalytic CO_(2) reduction(pCO_(2)R)and electrochemical CO_(2) reduction(ECO_(2)R)have attracted considerable interest owing to their high potential to address many environmental and energy-related issues.In this aspect,a single Cu atom decorated on a carbon nitride(CN)surface(Cu-CN)has gained increasing popularity because of its unique advantages,such as excellent atom utilization and ultrahigh catalytic activity.CN-particularly graphitic CN(g-C_(3)N_(4))-is a photo-and electrocatalyst and used as an important support material for single Cu atom-based catalysts.These key functions of Cu-CN-based catalysts can improve the catalytic performance and stability in the pCO_(2)R and ECO_(2)R during the application process.In this review,we focus on Cu as a single metal atom decorated on CN for efficient photoelectrochemical CO_(2) reduction(pECO_(2)R),where ECO_(2)R increases the electrocatalytic active area and promotes electron transfer,while pCO_(2)R enhances the surface redox reaction by efficiently using photogenerated charges and offering integral activity as well as an active interface between Cu and CN.Interactions of single Cu atom-based photo-,electro-,and photoelectrochemical catalysts with g-C_(3)N_(4) are discussed.Moreover,for a deeper understanding of the history of the development of pCO_(2)R and ECO_(2)R,the basics of CO_(2) reduction,including pCO_(2)R and ECO_(2)R over g-C_(3)N_(4),as well as the structural composition,characterization,unique design,and mechanism of a single atom site are reviewed in detail.Finally,some future prospects and key challenges are discussed.