The volumetric imaging of two-photon microscopy expands the focal depth and improves the throughput,which has unparalleled superiority for three-dimension samples,especially in neuroscience.However,emerging in volumet...The volumetric imaging of two-photon microscopy expands the focal depth and improves the throughput,which has unparalleled superiority for three-dimension samples,especially in neuroscience.However,emerging in volumetric imaging is still largely customized,which limits the integration with commercial two-photon systems.Here,we analyzed the key parameters that modulate the focal depth and lateral resolution of polarized annular imaging and proposed a volumetric imaging module that can be directly integrated into commercial two-photon systems using conventional optical elements.This design incorporates the beam diameter adjustment settings of commercial two-photon systems,allowing flexibility to adjust the depth of focus while maintaining the same lateral resolution.Further,the depth range and lateral resolution of the design were verified,and the imaging throughput was demonstrated by an increase in the number of imaging neurons in the awake mouse cerebral cortex.展开更多
基金supported by STI2030-Major Projects (2021ZD0201001 to H.G.)the National Natural Science Foundation of China (61890951 and 31871027 to W.Z.)+2 种基金Fundamental Research Funds for the Central Universities (HUST:2019KFYXMBZ011,2019KFYXMBZ039,2018KFYXMPT018,2019KFYXMBZ009 to H.G.)CAMS Innovation Fund for Medical Sciences (CIFMS,2019-I2M-5-014 to H.G.)the director fund of the WNLO.
文摘The volumetric imaging of two-photon microscopy expands the focal depth and improves the throughput,which has unparalleled superiority for three-dimension samples,especially in neuroscience.However,emerging in volumetric imaging is still largely customized,which limits the integration with commercial two-photon systems.Here,we analyzed the key parameters that modulate the focal depth and lateral resolution of polarized annular imaging and proposed a volumetric imaging module that can be directly integrated into commercial two-photon systems using conventional optical elements.This design incorporates the beam diameter adjustment settings of commercial two-photon systems,allowing flexibility to adjust the depth of focus while maintaining the same lateral resolution.Further,the depth range and lateral resolution of the design were verified,and the imaging throughput was demonstrated by an increase in the number of imaging neurons in the awake mouse cerebral cortex.