期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Interesting of Antifungal Effects of Novel In Vitro Fabrics of Stabilized ZnO Nanofluids
1
作者 fatemeh katouzian Zahra Fakhroueian Soheila Moradi Bidhendi 《Advances in Nanoparticles》 2016年第4期206-223,共18页
According to the extent of fungal infections, to be chronic these such diseases and recently the emerging issue of increased antibiotic resistance in fungal infections, most of scientists are going to find a proper wa... According to the extent of fungal infections, to be chronic these such diseases and recently the emerging issue of increased antibiotic resistance in fungal infections, most of scientists are going to find a proper way to replace antibacterial agent by significant semiconductor ZnO nanoparticles (NPs). They are well known to be one of the most important and special metal oxide nanoparticles in pharmaceutical against the most common fungi. ZnO nanoparticles were synthesized using sol-gel, hydrothermal and functionalized surface methods and formulated in water solutions as nanofluids. XRD, FTIR and SEM techniques and UV-Vis absorbance spectroscopy characterized their ZnO modified nanostructures. Also antimycotic potential according to generally tests such as: (MIC) minimum inhibitory concentration, (MFC) minimum fungicidal concentration and normally well diffusion method with standard strains fungi were performed. Among five common fungi strains using in this research, new various ZnO nanofluids showed noticeable results for dermatophyte fungi like Trichophyton mentagrophytes, Microsporum gypseum, Microsporum canis, Candida albicans and Candid tropicalis which had un growth zones in order 70, 40, 35, 30 and 30 mm in comparing with Clotrimazole reference reagent: 30, 25, 25, 18 and 20 mm by well method. The performance of MIC for ZnO nanofluids on fungi was determined to be equal to 0.35, 3.12, 6.25, 6.25 and 6.25 μgr/ml and MFC of nanoproducts showed the 1.5, 12.5, 25, 25 and 25 μgr/ml. Therefore, the designed ZnO nanofluids could reveal the most effect on fungi which cause dermal (ringworm), mucosal (thrush) and vaginal infections, so we are able to apply these surface high energetic ZnO water-based nanofluid formulations as in vitro nanomedicine and nanohygiene for the first time. 展开更多
关键词 ZnO Nanofluids Potential Medical Applications Antifungal Activity Traditional Re-sistant Antibiotic Surface Modification NANOMEDICINE Nanohygiene MFC Nanoformulation Stabilized Water-Based Nanoparticle
下载PDF
Influence of Modified ZnO Quantum Dots and Nanostructures as New Antibacterials
2
作者 Zahra Fakhroueian Faraz M. Harsini +3 位作者 Firoozeh Chalabian fatemeh katouzian Azizollah Shafiekhani Pegah Esmaeilzadeh 《Advances in Nanoparticles》 2013年第3期247-258,共12页
Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated... Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated as new nanomedicine compounds. Also antibacterial activity based on minimal inhibitory concentration and the growth inhibitory zone (well method) was evaluated. ZnO nanostructures were fabricated by novel hydrolysis sol-gel-hydrothermal process followed with rapid quenching as new technique using glycerine, vegetable fatty esters such as coconut, sunflower and Lauric alcohol ethoxylated as organic templates soluble in eco-friendly nanofluids. The results showed that Bacillus anthracis and Pseudomonas aerogenes were extremely sensitive to treatment with unique ZnO nanostructured. Their growth inhibitory zone presented 30 mm and 25 mm inhibition zone with better inhibitory effect compared to the Gentamicin antibiotic standard. ZnO nanostructures had also been indicated to have a wide range of antibacterial activities against both Gram-positive and Gram-negative bacteria especially more effective on (gr+) species using the growth inhibitory zone. We could design and make significant formulations of fatty acids and esters-capped ZnO quantum dots nanofluids which created high promising agents for controlling Anthrax, Staphylococcus epidermidis and their influences in antimicrobial properties with low cost for future. 展开更多
关键词 NANOBIOTECHNOLOGY ANTIBACTERIAL Activity HYDROLYSIS Sol-Gel-Hydrothermal ZnO Quantum DOTS MIC and Well Method Complex Defects
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部