期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characterization of NbSi_2–Al_2O_3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders 被引量:2
1
作者 Zohreh Yazdani fathallah karimzadeh +1 位作者 Mohammad-Hasan Abbasi Abbas Amini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期748-754,共7页
The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4Vsubstrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then... The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4Vsubstrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then plasma-sprayed using atmospheric plasma spraying. The structural transformations of the powders along with the morphological and mechanical changes of the coatings were examined by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and hard- ness testing. The results showed that after plasma spraying, the grain size increased, and the lattice strain decreased. However, the grain size of this compound after spraying was still in the nanometer range. The coating was uniform and exhibited good adhesion to the substrate. The microhardness and fracture toughness of the nanocomposite coating were higher than those of a nanostructured NbSi2 coating. 展开更多
关键词 NANOCOMPOSITES COATINGS plasma spraying mechanical alloying
下载PDF
Fabrication of Bulk (Fe,Cr)_3Al/Al_2O_3 Intermetallic Matrix Nanocomposite Through Mechanical Alloying and Sintering
2
作者 Sayyed Erfan Aghili Mohammad Hossein Enayati fathallah karimzadeh 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期911-919,共9页
In the present study, (Fe,Cr)3Al/20 vol% A1203 nanocomposite was prepared through mechanochemical reactions during ball milling and successfully bulked using a combination of cold isostatic press and sintering at 1... In the present study, (Fe,Cr)3Al/20 vol% A1203 nanocomposite was prepared through mechanochemical reactions during ball milling and successfully bulked using a combination of cold isostatic press and sintering at 1400℃ for 1 h. Two processing approaches were utilized to produce (Fe,Cr)3A1/A1203 nanocomposite: The first was milling of Fe, Cr, AI and Fe203, while the second one was milling of Fe, Cr, Al and Cr203, both in stoichiometric condition, to synthesize (Fe,Cr)3Al/20 vol% Al2O3. Structural changes of powder particles during mechanical alloying were studied by X-ray diffraction. The microstructure and the morphology of powder particles and bulk samples were also studied by scanning electron microscopy and transmission electron microscopy. Microstructural analysis showed that mechanochemical reactions took place during milling, and nanometric Al2O3 was uniformly distributed in the matrix. The results also showed that the second approach required a considerably higher milling time to produce (Fe,Cr)3Al/Al2O3 nanocomposite, as compared to the first one. For this reason, bulk samples were produced from the synthesized nanocomposite in the first approach. The microstructure of the sintered samples consisted of a network structure of (Fe,Cr)3Al and Al2O3 phases with superior mechanical properties. 展开更多
关键词 Iron aluminide Mechanical alloying NANOCOMPOSITE Mechanochemical treatment
原文传递
Phase Stability in Mechanically Alloyed Mg–Ni System Studied by Experiments and Thermodynamic Calculations
3
作者 Mohammad Hossein Enayati fathallah karimzadeh +1 位作者 Soheil Sabooni Majid Jafari 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1002-1007,共6页
In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA.... In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA. The phase composition and microstructural properties of Mg–Ni alloy were assessed by X-ray diffractometry, high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results showed that ball milling of magnesium and nickel powder mixture for 70 h yields nanostructural Mg2Ni compound with an average grain size of ~20 nm. Thermodynamic calculations revealed that in the composition ranges of 0.0 / XMg/ 0.03(at.%)and 0.97 / XMg/ 1, there is no driving force for amorphous phase formation. In the composition range of 0.07 / XMg/ 0.93, the change of Gibbs free energy for amorphous phase formation was more negative than solid solution.While for XMg= 0.66(nominal composition of Mg2Ni intermetallic phase), the change of Gibbs free energy for intermetallic phase was found to be more negative than both amorphous and solid solution phases indicating that Mg2Ni intermetallic compound is the most stable phase, in agreement with the experimental observations. 展开更多
关键词 Mechanical alloying Nanocrystalline Hydrogen storage material Mg2Ni Thermodynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部