期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Turing instability in a diffusive SIS epidemiological model 被引量:1
1
作者 Shaban Aly Houari B. Khenous fatma hussien 《International Journal of Biomathematics》 2015年第1期69-79,共11页
Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and... Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and cross-diffusion are investigated. We study the effect of diffusion on the stability of the endemic equilibrium with disease-induced mortality and nonlinear incidence rate, In the absence of diffusion the stationary solution stays stable but becomes unstable with respect to diffusion and that Turing instability takes place. We show that a standard (self-diffusion) system may be either stable or unstable, cross-diffusion response can stabilize an unstable standard system or decrease a "ihlring space (the space which the emergence of spatial patterns is holding) compared to the ~lhlring space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges. Numerical simulations are provided to illustrate and extend the theoretical results. 展开更多
关键词 SIS epidemiological model reaction-diffusion equation diffusive instability Turing instability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部