In the Gambia and across sub-Saharan Africa, reliable access to clean water and electrical power is constrained. As most rural water supply systems are built, enhanced understanding of efficiencies and optimisation is...In the Gambia and across sub-Saharan Africa, reliable access to clean water and electrical power is constrained. As most rural water supply systems are built, enhanced understanding of efficiencies and optimisation is required. Here, methods of integrating estimations of power outputs from solar photovoltaic arrays into gravity-fed water distribution network modelling are investigated. The effects of powering a rural water distribution system that is replenished with groundwater pumps that use solar power are investigated, along with the effect of this on other network design decisions. The water storage tank and pipework of a rural community with an estimated 2800 people and 28 standpipes from a borehole was selected. EPANET modelling software and genetic algorithms were used to run network optimisation simulations of: water tank location, elevation and volume;pipe diameter and configuration;and optimal system design in terms of cost. Different scenarios were produced, including supply, demand and required water storage curves, which could have practical application for rural water distribution system design. Indicative costs for theoretical water distribution networks will be useful for decision makers and planners.展开更多
An estimated one-third of water points in rural sub-Saharan Africa are non-functioning at any one time because of lack of upkeep. Communities are left without access to clean drinking water and this has multiple knock...An estimated one-third of water points in rural sub-Saharan Africa are non-functioning at any one time because of lack of upkeep. Communities are left without access to clean drinking water and this has multiple knock-on developmental impacts. An innovative pre-payment and Internet-of-Things enabled “e-Tap” based water technology and management system cycles revenue back into operation and maintenance and collects accurate and real-time data on consumption and tap failures. This has been operational in the Gambia since April 2016. Preliminary research has begun on evaluating this innovation. Technical tests were conducted to examine the efficiency of the e-Tap under varying conditions. Water use trends were then analysed by using the cloud-collected data transmitted from operational e-Taps. Further, baseline sveys to investigate social parameters were undertaken on 20 user households. This exploratory research shows the e-Taps to work efficiently in the laboratory and the Gambia with negligible failures, and to reduce distances users must travel for clean water and time they spend collecting.展开更多
文摘In the Gambia and across sub-Saharan Africa, reliable access to clean water and electrical power is constrained. As most rural water supply systems are built, enhanced understanding of efficiencies and optimisation is required. Here, methods of integrating estimations of power outputs from solar photovoltaic arrays into gravity-fed water distribution network modelling are investigated. The effects of powering a rural water distribution system that is replenished with groundwater pumps that use solar power are investigated, along with the effect of this on other network design decisions. The water storage tank and pipework of a rural community with an estimated 2800 people and 28 standpipes from a borehole was selected. EPANET modelling software and genetic algorithms were used to run network optimisation simulations of: water tank location, elevation and volume;pipe diameter and configuration;and optimal system design in terms of cost. Different scenarios were produced, including supply, demand and required water storage curves, which could have practical application for rural water distribution system design. Indicative costs for theoretical water distribution networks will be useful for decision makers and planners.
文摘An estimated one-third of water points in rural sub-Saharan Africa are non-functioning at any one time because of lack of upkeep. Communities are left without access to clean drinking water and this has multiple knock-on developmental impacts. An innovative pre-payment and Internet-of-Things enabled “e-Tap” based water technology and management system cycles revenue back into operation and maintenance and collects accurate and real-time data on consumption and tap failures. This has been operational in the Gambia since April 2016. Preliminary research has begun on evaluating this innovation. Technical tests were conducted to examine the efficiency of the e-Tap under varying conditions. Water use trends were then analysed by using the cloud-collected data transmitted from operational e-Taps. Further, baseline sveys to investigate social parameters were undertaken on 20 user households. This exploratory research shows the e-Taps to work efficiently in the laboratory and the Gambia with negligible failures, and to reduce distances users must travel for clean water and time they spend collecting.