AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease(IBD). METHODS Colorectal samples were obtained from patients unde...AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease(IBD). METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or rectosigmoidoscopy. Patients diagnosed with ulcerativecolitis(n = 18) or Crohn's disease(n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group(CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, doublelabeled confocal microscopy was used. RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive(-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and noninflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels. CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.展开更多
Spontaneous light emission from living animals can overcome the investigated light signals in small animal luminescence imaging. Despite autofluorescence emission is well studied the spontaneous luminescence backgroun...Spontaneous light emission from living animals can overcome the investigated light signals in small animal luminescence imaging. Despite autofluorescence emission is well studied the spontaneous luminescence background is less known and its importance is growing due to the new born imaging techniques like Cerenkov Luminescence Imaging and Radionuclide Luminescence Imaging in which faint sources are often involved. In order to investigate the spontaneous emission we studied the background luminescence in vivo from health Nu/Nu mice in optical imaging acquisitions and we related it with the optical properties of the diet of the animals. In particular luminescence images of mice feed with normal diet used in animal facilities were acquired using a commercial optical imager. The intensity and the spectral features of the luminescence emission from the animal surface after sunshine exposition and after normal lighting laboratory conditions were measured. The same was done with the pellets of food used to feed the animals. We found a background emission from the entire animal surface and localized light sources in the abdominal/lumbar region. Their intensity can be modulated by the light exposition of the animals before the imaging session and decreases along the time when they are put in darkness. The comparison of the luminescence time decay of animals and pellets suggests that the light sources are related to the persistent luminescence of the molecules contained in the food. So ambient exposure before imaging is important for luminescence imaging in order to keep down the background. The optical properties of food are also important and it necessary to check them before to feed the animals not only in fluorescence imaging but also in luminescence imaging.展开更多
文摘AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease(IBD). METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or rectosigmoidoscopy. Patients diagnosed with ulcerativecolitis(n = 18) or Crohn's disease(n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group(CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, doublelabeled confocal microscopy was used. RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive(-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and noninflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels. CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.
文摘Spontaneous light emission from living animals can overcome the investigated light signals in small animal luminescence imaging. Despite autofluorescence emission is well studied the spontaneous luminescence background is less known and its importance is growing due to the new born imaging techniques like Cerenkov Luminescence Imaging and Radionuclide Luminescence Imaging in which faint sources are often involved. In order to investigate the spontaneous emission we studied the background luminescence in vivo from health Nu/Nu mice in optical imaging acquisitions and we related it with the optical properties of the diet of the animals. In particular luminescence images of mice feed with normal diet used in animal facilities were acquired using a commercial optical imager. The intensity and the spectral features of the luminescence emission from the animal surface after sunshine exposition and after normal lighting laboratory conditions were measured. The same was done with the pellets of food used to feed the animals. We found a background emission from the entire animal surface and localized light sources in the abdominal/lumbar region. Their intensity can be modulated by the light exposition of the animals before the imaging session and decreases along the time when they are put in darkness. The comparison of the luminescence time decay of animals and pellets suggests that the light sources are related to the persistent luminescence of the molecules contained in the food. So ambient exposure before imaging is important for luminescence imaging in order to keep down the background. The optical properties of food are also important and it necessary to check them before to feed the animals not only in fluorescence imaging but also in luminescence imaging.