The skill of robotic hand-eye coordination not only helps robots to deal with real time environment,but also afects the fundamental framework of robotic cognition.A number of approaches have been developed in the lite...The skill of robotic hand-eye coordination not only helps robots to deal with real time environment,but also afects the fundamental framework of robotic cognition.A number of approaches have been developed in the literature for construction of the robotic hand-eye coordination.However,several important features within infant developmental procedure have not been introduced into such approaches.This paper proposes a new method for robotic hand-eye coordination by imitating the developmental progress of human infants.The work employs a brain-like neural network system inspired by infant brain structure to learn hand-eye coordination,and adopts a developmental mechanism from psychology to drive the robot.The entire learning procedure is driven by developmental constraint: The robot starts to act under fully constrained conditions,when the robot learning system becomes stable,a new constraint is assigned to the robot.After that,the robot needs to act with this new condition again.When all the contained conditions have been overcome,the robot is able to obtain hand-eye coordination ability.The work is supported by experimental evaluation,which shows that the new approach is able to drive the robot to learn autonomously,and make the robot also exhibit developmental progress similar to human infants.展开更多
Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscle...Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscles. A popular application for EEGs is the EEG-based speller, which translates EEG signals into intentions to spell particular words, thus benefiting those suffering from severe disabilities, such as amyotrophic lateral sclerosis. Although the EEG-based English speller (EEGES) has been widely studied in recent years, few studies have focused on the EEG-based Chinese speller (EEGCS). The EEGCS is more difficult to develop than the EEGES, because the English alphabet contains only 26 letters. By contrast, Chinese contains more than 11000 logographic characters. The goal of this paper is to survey the literature on EEGCS systems. First, the taxonomy of current EEGCS systems is discussed to get the gist of the paper. Then, a common framework unifying the current EEGCS and EEGES systems is proposed, in which the concept of EEG-based choice acts as a core component. In addition, a variety of current EEGCS systems are investigated and discussed to highlight the advances, current problems, and future directions for EEGCS.展开更多
基金supported by National Natural Science Foundation of China (No.6120333661273338 and 61003014)Major State Basic Research Development Program of China (973 Program)(No.2013CB329502)
文摘The skill of robotic hand-eye coordination not only helps robots to deal with real time environment,but also afects the fundamental framework of robotic cognition.A number of approaches have been developed in the literature for construction of the robotic hand-eye coordination.However,several important features within infant developmental procedure have not been introduced into such approaches.This paper proposes a new method for robotic hand-eye coordination by imitating the developmental progress of human infants.The work employs a brain-like neural network system inspired by infant brain structure to learn hand-eye coordination,and adopts a developmental mechanism from psychology to drive the robot.The entire learning procedure is driven by developmental constraint: The robot starts to act under fully constrained conditions,when the robot learning system becomes stable,a new constraint is assigned to the robot.After that,the robot needs to act with this new condition again.When all the contained conditions have been overcome,the robot is able to obtain hand-eye coordination ability.The work is supported by experimental evaluation,which shows that the new approach is able to drive the robot to learn autonomously,and make the robot also exhibit developmental progress similar to human infants.
基金Project supported by the China Scholarship Council,the National Natural Science Foundation of China(Nos.61673328,61673322,61402386,61305061,61203336,and 61273338)the Fundamental Research Funds for the Central Universities,China(No.20720160126)the National Basic Research Program(973)of China(No.2013CB329502)
文摘Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscles. A popular application for EEGs is the EEG-based speller, which translates EEG signals into intentions to spell particular words, thus benefiting those suffering from severe disabilities, such as amyotrophic lateral sclerosis. Although the EEG-based English speller (EEGES) has been widely studied in recent years, few studies have focused on the EEG-based Chinese speller (EEGCS). The EEGCS is more difficult to develop than the EEGES, because the English alphabet contains only 26 letters. By contrast, Chinese contains more than 11000 logographic characters. The goal of this paper is to survey the literature on EEGCS systems. First, the taxonomy of current EEGCS systems is discussed to get the gist of the paper. Then, a common framework unifying the current EEGCS and EEGES systems is proposed, in which the concept of EEG-based choice acts as a core component. In addition, a variety of current EEGCS systems are investigated and discussed to highlight the advances, current problems, and future directions for EEGCS.