Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture,which increases patient susceptibility to fragile fractures.The intricate mechanisms governing...Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture,which increases patient susceptibility to fragile fractures.The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles(EVs),which play crucial roles in both pathological and physiological contexts.EVs derived from various sources exert distinct effects on osteoporosis.Specifically,EVs released by osteoblasts,endothelial cells,myocytes,and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins,miRNAs,and cytokines.Conversely,EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation.Furthermore,the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising.Here,we review the current understanding of the impact of EVs on bone homeostasis,including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis.Furthermore,we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs.Finally,we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.展开更多
The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longi...The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longissimus thoracis et lumborum(n = 9) was assigned randomly to the control group(3.72 ℃/h), very fast chilling-Ⅰ group(VFC-Ⅰ, 9.31℃/h) and VFC-Ⅱ group(14.43 ℃/h). The DIA was used to analyze the difference in proteins under different chilling rates. Results showed that tenderness was improved significantly in meat at the chilling rate of 14.43 ℃/h. Seventy-nine differential abundant proteins(fold change > 1.5, P < 0.05), including 46 up-regulated and 33 down-regulated proteins, were identified and mainly involved in carbon metabolism, pyruvate metabolism and proteasome pathways. These pathways indicated that VFC delayed cell metabolism and glycolysis by down-regulating the expression of metabolic enzymes. The tenderness was improved by up-regulating the expression of proteasome and m-calpain.展开更多
We used the Integrated Biological Responses version 2(IBRv2)method to evaluate the biological eff ects of heavy metals in the sediments in Laizhou Bay,China on the benthic goby Acanthogobius ommaturus.In December 2018...We used the Integrated Biological Responses version 2(IBRv2)method to evaluate the biological eff ects of heavy metals in the sediments in Laizhou Bay,China on the benthic goby Acanthogobius ommaturus.In December 2018,gobies and sediments were collected from 15 stations.We measured the activities of defense enzymes and the contents of malondialdehyde(MDA)and metallothionein(MT)in the goby liver as well as the levels of heavy metals in the sediments and goby muscle tissue.Most of the heavy metal concentrations in sediment at each station were below the Class I criteria set by Chinese Standards for Marine Sediment Quality,and the Håkanson ecological risk index suggested low risk for the heavy metals.We found that A.ommaturus could eff ectively accumulate mercury,cadmium,arsenic,and zinc and that the contents of MT and MDA and the activities of glutathione peroxidase and glutathione reductase were suitable biomarkers of heavy metal pollution in this species.The IBRv2 method integrated these four biomarkers and discriminated stations according to heavy metal pollution.Higher IBRv2 values suggested more adverse eff ects in gobies,corroborating more serious heavy metal contamination.The stations with high IBRv2 values and high contents of heavy metals were mainly distributed in the west and northeast parts of the bay.These results show that the IBRv2 approach is a feasible strategy for assessing heavy metal pollution through biological response and biological status and that it can be implemented for environmental monitoring in Laizhou Bay.展开更多
Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and ...Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and salinity response in soybean.We identified potential interaction target proteins of Gm PUB21by yeast two-hybrid c DNA library screening,Gm Di19-5 as a candidate.Bimolecular fluorescence complementation and glutathionine-S-transferase pull-down assays confirmed the interaction between Gm Di19-5 and Gm PUB21.Gm Di19-5 was induced by Na Cl,drought,and abscisic acid(ABA) treatments.Gm Di19-5 was expressed in the cytoplasm and nucleus.Gm Di19-5 overexpression conferred hypersensitivity to drought and high salinity,whereas Gm Di19-5 silencing increased drought and salinity tolerance.Transcripts of ABA-and stress response-associated genes including Gm RAB18 and Gm DREB2A were downregulated in Gm Di19-5-overexpressing plants under drought and salinity stresses.ABA decreased the protein level of Gm Di19-5 in vivo,whereas Gm PUB21 increased the decrease of Gm Di19-5 after exogenous ABA application.The accumulation of Gm PUB21 was also inhibited by Gm Di19-5.We conclude that Gm PUB21 and Gm Di19-5 collaborate to regulate drought and salinity tolerance via an ABA-dependent pathway.展开更多
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Eul...The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed- parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.展开更多
Pelvic floor disorders(PFDs)represent a group of common and frequentlyoccurring diseases that seriously affect the life quality of women,generally including stress urinary incontinence and pelvic organ prolapse.Surger...Pelvic floor disorders(PFDs)represent a group of common and frequentlyoccurring diseases that seriously affect the life quality of women,generally including stress urinary incontinence and pelvic organ prolapse.Surgery has been used as a treatment for PFD,but almost 30%of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates.Therefore,investigations of new therapeutic strategies are urgently needed.Stem cells possess strong multi-differentiation,self-renewal,immunomodulation,and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD.Recently,various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD,as well as reduced inflammatory reactions,collagen deposition,and foreign body reaction.However,with relatively high rates of complications such as bladder stone formation and wound infections,further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources,exosomes,and tissueengineering combined with stem cell-based implants,among others.This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment,with the hope of providing more promising stem cell treatment strategies for PFD in the future.展开更多
Investigations on the interconnection between the polarization rotation and crack propagation are performed for [110J-oriented 74Pb(Mg1/3Nb2/3)O3- 26PbTiO3 relaxor ferroelectric single crystal under electric loading...Investigations on the interconnection between the polarization rotation and crack propagation are performed for [110J-oriented 74Pb(Mg1/3Nb2/3)O3- 26PbTiO3 relaxor ferroelectric single crystal under electric loadings along [001] direction. The crystal is of predominantly monoclinic MA phase with scatter dis- tributed rhombohedral (R) phase under a moderate poling field of 900 V/mm in [00l] direction. With magnitude of 800 V/ram, a through thickness crack is initi- ated near the electrode by electric cycling. Static electric loadings is then imposed to the single crystal. As the applied static electric field increases, domain switch- ing in the monoclinic MA phase and phase transition from MA to R phase occur near the crack. The results indicate that the crack features a conducting one. Whether domain switching or phase transition occurs depends on the intensity of the electric field component that is perpendicular to the applied electric field.展开更多
Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a ...Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a systematic approach is proposed to detect feature points of human body automatically from its front and side images. Firstly, an efficient approach for silhouette and contour detection is used to represent the contour curves of a human body shape with Freeman’s 8-connected chain codes. The contour curves are considered as a number of segments connected together. Then, a series of feature points on human body are extracted based on the specified rules by measuring the differences between the directions of the segments. In total, 101 feature points with clearly geometric properties (that rather accurately reflect the bump or turning of the contours) are extracted automatically, including 27 points corresponding to the definitions of the landmarks about garment measurements. Finally, the proposed approach was tested on ten human subjects and the entire 101 feature points with specific geography geometrical characteristics were correctly extracted, indicating an effective and robust performance.展开更多
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphyti...The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.展开更多
The limitations of current drug-eluting stent technologies in selectively inhibiting vascular smooth muscle cell proliferation,which often leads to inflammation,call for innovative approaches in coronary artery diseas...The limitations of current drug-eluting stent technologies in selectively inhibiting vascular smooth muscle cell proliferation,which often leads to inflammation,call for innovative approaches in coronary artery disease treatment.In the present work,we propose a revolutionary solution:a three-in-one platform for vascular stents,combining arsenic trioxide(ATO)and tacrolimus(TAC)to address anti-proliferation,pro-endothelialization,and anti-inflammation aspects.Our findings demonstrate that the synergistic action of ATO and TAC effectively suppresses aberrant vascular smooth muscle cell proliferation and mitigates endothelial cell inflammation.Remarkably,the combination treatment of TAC/ATO enhances endothelial cell migration and adhesion abilities.Moreover,our TAC/ATO-eluting stent exhibits superior re-endothelialization and anti-restenosis effects in a rabbit and porcine stent implantation model.Both in vitro and in vivo results solidify the notion that the TAC/ATO-eluting stent ensures rapid re-endothelialization and significantly reduces the incidence of in-stent restenosis.Overall,this study represents a promising and novel multifunctional platform with immense potential in the therapy of coronary artery disease.展开更多
Atherosclerosis is a chronic inflammatory disease, occurring preferentially in bifurcation, branching, and bending of blood vessels exposed to disturbed flow. Disturbed flow in atheroprone areas activates elevated pro...Atherosclerosis is a chronic inflammatory disease, occurring preferentially in bifurcation, branching, and bending of blood vessels exposed to disturbed flow. Disturbed flow in atheroprone areas activates elevated proteases, degrading elastin lamellae and collagenous matrix, resulting in endothelial dysfunction and vascular remodeling. As a mediator for extracellular matrix protein degradation, cathepsin K (CTSK) was directly regulated by hemodynamics and contributed to atherosclerosis. The mechanism of CTSK responding to disturbed flow and contributing to disturbed flow-induced atherosclerosis is unclear. In this study, the partial carotid ligation model of mice and in vitro disturbed shear stress model were constructed to explore the contribution and potential mechanism of CTSK in atherosclerosis. Our results indicated that CTSK elevated in the disturbed flow area in vivo and in vitro along with endothelial inflammation and atherogenesis. Additionally, the expression of integrin αvβ3 was upregulated in these atheroprone areas. We found that inhibition of the integrin αvβ3-cytoskeleton pathway could significantly block the activation of NF-κB and the expression of CTSK. Collectively, our findings unraveled that disturbed flow induces increased CTSK expression, and contributes to endothelial inflammation and vascular remodeling, leading to atherogenesis eventually. This study is helpful to provide new enlightenment for the therapy of atherosclerosis.展开更多
For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst(PMS-Fe-380) was prepar...For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst(PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmet–Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue(MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover,leaching tests indicated that the leached iron is negligible(〈0.5 mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst.展开更多
In this paper, we establish the existence of three weak solutions for quasilinear elliptic equations in an Orlicz-Sobolev space via an abstract result recently obtained by Ricceri in [13].
基金This study was supported by the National Natural Science Foundation of China(Grant numbers 11932014,12372315 and 32301089)the Sichuan Science and Technology Program(Grant numbers 2022NSFSC0765 and 2022ZYD0079).
文摘Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture,which increases patient susceptibility to fragile fractures.The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles(EVs),which play crucial roles in both pathological and physiological contexts.EVs derived from various sources exert distinct effects on osteoporosis.Specifically,EVs released by osteoblasts,endothelial cells,myocytes,and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins,miRNAs,and cytokines.Conversely,EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation.Furthermore,the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising.Here,we review the current understanding of the impact of EVs on bone homeostasis,including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis.Furthermore,we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs.Finally,we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.
基金support from the National Natural Science Foundation of China(32030086).
文摘The objective of this study was to evaluate the effects of chilling rate on porcine meat quality from the perspective of proteome using data independent acquisition(DIA)-based quantitative proteomic strategy. M. longissimus thoracis et lumborum(n = 9) was assigned randomly to the control group(3.72 ℃/h), very fast chilling-Ⅰ group(VFC-Ⅰ, 9.31℃/h) and VFC-Ⅱ group(14.43 ℃/h). The DIA was used to analyze the difference in proteins under different chilling rates. Results showed that tenderness was improved significantly in meat at the chilling rate of 14.43 ℃/h. Seventy-nine differential abundant proteins(fold change > 1.5, P < 0.05), including 46 up-regulated and 33 down-regulated proteins, were identified and mainly involved in carbon metabolism, pyruvate metabolism and proteasome pathways. These pathways indicated that VFC delayed cell metabolism and glycolysis by down-regulating the expression of metabolic enzymes. The tenderness was improved by up-regulating the expression of proteasome and m-calpain.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0900704)the Yantai Key Research and Development Program(No.2019XDHZ097)+2 种基金the National Natural Science Foundation of China(No.42076137)the Natural Science Foundation of Shandong Province(No.ZR2020QD003)the Shandong Key Laboratory of Coastal Environmental Processes,YICCAS(No.2019SDHADKFJJ16)。
文摘We used the Integrated Biological Responses version 2(IBRv2)method to evaluate the biological eff ects of heavy metals in the sediments in Laizhou Bay,China on the benthic goby Acanthogobius ommaturus.In December 2018,gobies and sediments were collected from 15 stations.We measured the activities of defense enzymes and the contents of malondialdehyde(MDA)and metallothionein(MT)in the goby liver as well as the levels of heavy metals in the sediments and goby muscle tissue.Most of the heavy metal concentrations in sediment at each station were below the Class I criteria set by Chinese Standards for Marine Sediment Quality,and the Håkanson ecological risk index suggested low risk for the heavy metals.We found that A.ommaturus could eff ectively accumulate mercury,cadmium,arsenic,and zinc and that the contents of MT and MDA and the activities of glutathione peroxidase and glutathione reductase were suitable biomarkers of heavy metal pollution in this species.The IBRv2 method integrated these four biomarkers and discriminated stations according to heavy metal pollution.Higher IBRv2 values suggested more adverse eff ects in gobies,corroborating more serious heavy metal contamination.The stations with high IBRv2 values and high contents of heavy metals were mainly distributed in the west and northeast parts of the bay.These results show that the IBRv2 approach is a feasible strategy for assessing heavy metal pollution through biological response and biological status and that it can be implemented for environmental monitoring in Laizhou Bay.
基金supported by the National Key Research and Development Program of China (2022YFF1001500)the Open Competition Project of Seed Industry Revitalization of Jiangsu Province (JBGS[2021]060)+3 种基金the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014)China Agriculture Research System of MOF and MARA (CARS-04)the Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP)Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry (CIC-MCP)。
文摘Drought-induced protein 19(Di19) is a Cys2/His2 zinc-finger protein that functions in plant growth and development and in tolerance to abiotic stresses.Gm PUB21,an E3 ubiquitin ligase,negatively regulates drought and salinity response in soybean.We identified potential interaction target proteins of Gm PUB21by yeast two-hybrid c DNA library screening,Gm Di19-5 as a candidate.Bimolecular fluorescence complementation and glutathionine-S-transferase pull-down assays confirmed the interaction between Gm Di19-5 and Gm PUB21.Gm Di19-5 was induced by Na Cl,drought,and abscisic acid(ABA) treatments.Gm Di19-5 was expressed in the cytoplasm and nucleus.Gm Di19-5 overexpression conferred hypersensitivity to drought and high salinity,whereas Gm Di19-5 silencing increased drought and salinity tolerance.Transcripts of ABA-and stress response-associated genes including Gm RAB18 and Gm DREB2A were downregulated in Gm Di19-5-overexpressing plants under drought and salinity stresses.ABA decreased the protein level of Gm Di19-5 in vivo,whereas Gm PUB21 increased the decrease of Gm Di19-5 after exogenous ABA application.The accumulation of Gm PUB21 was also inhibited by Gm Di19-5.We conclude that Gm PUB21 and Gm Di19-5 collaborate to regulate drought and salinity tolerance via an ABA-dependent pathway.
基金supported by the National Natural Science Foundation of China (Grant 11172087)
文摘The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed- parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.
基金Foundation of Sichuan Provincial Science and Technology Program,No.2019YFH0147 and No.2019YFH0158Chengdu Technological Innovation Research and Development Project,No.2018-YF05-00195-SN+1 种基金West China Second University Hospital Xinya Fund,No.kx1111.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University,No.ZYJC18016.
文摘Pelvic floor disorders(PFDs)represent a group of common and frequentlyoccurring diseases that seriously affect the life quality of women,generally including stress urinary incontinence and pelvic organ prolapse.Surgery has been used as a treatment for PFD,but almost 30%of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates.Therefore,investigations of new therapeutic strategies are urgently needed.Stem cells possess strong multi-differentiation,self-renewal,immunomodulation,and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD.Recently,various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD,as well as reduced inflammatory reactions,collagen deposition,and foreign body reaction.However,with relatively high rates of complications such as bladder stone formation and wound infections,further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources,exosomes,and tissueengineering combined with stem cell-based implants,among others.This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment,with the hope of providing more promising stem cell treatment strategies for PFD in the future.
基金supported by the National Natural Science Foundation of China(11272174)
文摘Investigations on the interconnection between the polarization rotation and crack propagation are performed for [110J-oriented 74Pb(Mg1/3Nb2/3)O3- 26PbTiO3 relaxor ferroelectric single crystal under electric loadings along [001] direction. The crystal is of predominantly monoclinic MA phase with scatter dis- tributed rhombohedral (R) phase under a moderate poling field of 900 V/mm in [00l] direction. With magnitude of 800 V/ram, a through thickness crack is initi- ated near the electrode by electric cycling. Static electric loadings is then imposed to the single crystal. As the applied static electric field increases, domain switch- ing in the monoclinic MA phase and phase transition from MA to R phase occur near the crack. The results indicate that the crack features a conducting one. Whether domain switching or phase transition occurs depends on the intensity of the electric field component that is perpendicular to the applied electric field.
文摘Human body feature extraction based on 2D images provides an efficient method for many applications, e.g. non-contact body size measurements, constructing 3D human model and recognizing human actions. In this paper a systematic approach is proposed to detect feature points of human body automatically from its front and side images. Firstly, an efficient approach for silhouette and contour detection is used to represent the contour curves of a human body shape with Freeman’s 8-connected chain codes. The contour curves are considered as a number of segments connected together. Then, a series of feature points on human body are extracted based on the specified rules by measuring the differences between the directions of the segments. In total, 101 feature points with clearly geometric properties (that rather accurately reflect the bump or turning of the contours) are extracted automatically, including 27 points corresponding to the definitions of the landmarks about garment measurements. Finally, the proposed approach was tested on ten human subjects and the entire 101 feature points with specific geography geometrical characteristics were correctly extracted, indicating an effective and robust performance.
基金supported by the National Special Program of Water Environment(No.2017ZX07204002)the National Natural Science Foundation of China(No.41871082)。
文摘The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.
基金National Natural Science Foundation of China(11932014,31971239)Sichuan Science and Technology Program(2022NSFSC0765,2022ZYD0079).
文摘The limitations of current drug-eluting stent technologies in selectively inhibiting vascular smooth muscle cell proliferation,which often leads to inflammation,call for innovative approaches in coronary artery disease treatment.In the present work,we propose a revolutionary solution:a three-in-one platform for vascular stents,combining arsenic trioxide(ATO)and tacrolimus(TAC)to address anti-proliferation,pro-endothelialization,and anti-inflammation aspects.Our findings demonstrate that the synergistic action of ATO and TAC effectively suppresses aberrant vascular smooth muscle cell proliferation and mitigates endothelial cell inflammation.Remarkably,the combination treatment of TAC/ATO enhances endothelial cell migration and adhesion abilities.Moreover,our TAC/ATO-eluting stent exhibits superior re-endothelialization and anti-restenosis effects in a rabbit and porcine stent implantation model.Both in vitro and in vivo results solidify the notion that the TAC/ATO-eluting stent ensures rapid re-endothelialization and significantly reduces the incidence of in-stent restenosis.Overall,this study represents a promising and novel multifunctional platform with immense potential in the therapy of coronary artery disease.
基金supported by The National Natural Science Foundation of China(No.11932014,32071312,31870939,31971239 and 12032007).
文摘Atherosclerosis is a chronic inflammatory disease, occurring preferentially in bifurcation, branching, and bending of blood vessels exposed to disturbed flow. Disturbed flow in atheroprone areas activates elevated proteases, degrading elastin lamellae and collagenous matrix, resulting in endothelial dysfunction and vascular remodeling. As a mediator for extracellular matrix protein degradation, cathepsin K (CTSK) was directly regulated by hemodynamics and contributed to atherosclerosis. The mechanism of CTSK responding to disturbed flow and contributing to disturbed flow-induced atherosclerosis is unclear. In this study, the partial carotid ligation model of mice and in vitro disturbed shear stress model were constructed to explore the contribution and potential mechanism of CTSK in atherosclerosis. Our results indicated that CTSK elevated in the disturbed flow area in vivo and in vitro along with endothelial inflammation and atherogenesis. Additionally, the expression of integrin αvβ3 was upregulated in these atheroprone areas. We found that inhibition of the integrin αvβ3-cytoskeleton pathway could significantly block the activation of NF-κB and the expression of CTSK. Collectively, our findings unraveled that disturbed flow induces increased CTSK expression, and contributes to endothelial inflammation and vascular remodeling, leading to atherogenesis eventually. This study is helpful to provide new enlightenment for the therapy of atherosclerosis.
基金supported by the Major Science and Technology Projects Focus on Social Development Projects of Zhejiang Province (Nos. 2014C03002 and 2012C03004-1)
文摘For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst(PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmet–Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue(MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover,leaching tests indicated that the leached iron is negligible(〈0.5 mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst.
基金Supported by the National Natural Science Foundation of China(Grant No.11626038)
文摘In this paper, we establish the existence of three weak solutions for quasilinear elliptic equations in an Orlicz-Sobolev space via an abstract result recently obtained by Ricceri in [13].