The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
Objective: Primary resistance to trastuzumab frequently occurs in human epidermal growth factor receptor 2(HER2)-positive(+) breast cancer patients and remains a clinical challenge. Pyrotinib is a novel tyrosine kinas...Objective: Primary resistance to trastuzumab frequently occurs in human epidermal growth factor receptor 2(HER2)-positive(+) breast cancer patients and remains a clinical challenge. Pyrotinib is a novel tyrosine kinase inhibitor that has shown efficacy in the treatment of HER2+ breast cancer. However, the efficacy of pyrotinib in HER2+ breast cancer with primary trastuzumab resistance is unknown.Methods: HER2+ breast cancer cells sensitive or primarily resistant to trastuzumab were treated with trastuzumab, pyrotinib, or the combination. Cell proliferation, migration, invasion, and HER2 downstream signal pathways were analyzed. The effects of pyrotinib plus trastuzumab and pertuzumab plus trastuzumab were compared in breast cancer cells in vitro and a xenograft mouse model with primary resistance to trastuzumab.Results: Pyrotinib had a therapeutic effect on trastuzumab-sensitive HER2+ breast cancer cells by inhibiting phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT) and rat sarcoma virus(RAS)/rapidly accelerated fibrosarcoma(RAF)/mitogen-activated protein kinase(MAPK)/extracellular-signal regulated kinase(ERK)pathways. In primary trastuzumab-resistant cells, pyrotinib inhibited cell growth, migration, invasion, and HER2 downstream pathways, whereas trastuzumab had no effects. The combination with trastuzumab did not show increased effects compared with pyrotinib alone. Compared with pertuzumab plus trastuzumab, pyrotinib plus trastuzumab was more effective in inhibiting cell proliferation and HER2 downstream pathways in breast cancer cells and tumor growth in a trastuzumab-resistant HER2+ breast cancer xenograft model.Conclusions: Pyrotinib-containing treatments exhibited anti-cancer effects in HER2+ breast cancer cells sensitive and with primary resistance to trastuzumab. Notably, pyrotinib plus trastuzumab was more effective than trastuzumab plus pertuzumab in inhibiting tumor growth and HER2 downstream pathways in HER2+ breast cancer with primary resistance to trastuzumab. These findings support clinical testing of the therapeutic efficacy of dual anti-HER2 treatment combining an intracellular small molecule with an extracellular antibody.展开更多
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr...In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.展开更多
Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the pa...Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO_(2)/CO concentration at the electrode.Building upon this approach,we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO_(2)RR to C_(2+)in a neutral electrolyte.Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules(HEB-CuO NPs),a remarkable C_(2+)Faradaic efficiency of nearly 90%was achieved at an unprecedented current density of 300 mA cm^(-2),and a high FE(>80%)was maintained at a wide range of current densities(100-600 mA cm^(-2))in neutral environments using a flow cell.Furthermore,in a membrane electrode assembly(MEA)electrolyzer,86.14%FEC2+was achieved at a partial current density of 387.6 mA cm^(-2)while maintaining continuous operation for over 50 h at a current density of 200 mA cm^(-2).In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants(CO)interacting with the surface,thereby promoting efficient C-C coupling and enhancing the yield of C_(2+)products.This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C_(2+)production.展开更多
Rhododendron is famous for its high ornamental value.However,the genus is taxonomically difficult and the relationships within Rhododendron remain unresolved.In addition,the origin of key morphological characters with...Rhododendron is famous for its high ornamental value.However,the genus is taxonomically difficult and the relationships within Rhododendron remain unresolved.In addition,the origin of key morphological characters with high horticulture value need to be explored.Both problems largely hinder utilization of germplasm resources.Most studies attempted to disentangle the phylogeny of Rhododendron,but only used a few genomic markers and lacked large-scale sampling,resulting in low clade support and contradictory phylogenetic signals.Here,we used restriction-site associated DNA sequencing(RAD-seq)data and morphological traits for 144 species of Rhododendron,representing all subgenera and most sections and subsections of this species-rich genus,to decipher its intricate evolutionary history and reconstruct ancestral state.Our results revealed high resolutions at subgenera and section levels of Rhododendron based on RAD-seq data.Both optimal phylogenetic tree and split tree recovered five lineages among Rhododendron.Subg.Therorhodion(cladeⅠ)formed the basal lineage.Subg.Tsutsusi and Azaleastrum formed cladeⅡand had sister relationships.CladeⅢincluded all scaly rhododendron species.Subg.Pentanthera(cladeⅣ)formed a sister group to Subg.Hymenanthes(cladeⅤ).The results of ancestral state reconstruction showed that Rhododendron ancestor was a deciduous woody plant with terminal inflorescence,ten stamens,leaf blade without scales and broadly funnelform corolla with pink or purple color.This study shows significant distinguishability to resolve the evolutionary history of Rhododendron based on high clade support of phylogenetic tree constructed by RAD-seq data.It also provides an example to resolve discordant signals in phylogenetic trees and demonstrates the application feasibility of RAD-seq with large amounts of missing data in deciphering intricate evolutionary relationships.Additionally,the reconstructed ancestral state of six important characters provides insights into the innovation of key characters in Rhododendron.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po...W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.展开更多
The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fe...The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.展开更多
Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such lar...Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
Accurate extraction of pores and fractures is a prerequisite for constructing digital rocks for physical property simulation and microstructural response analysis.However,fractures in CT images are similar in grayscal...Accurate extraction of pores and fractures is a prerequisite for constructing digital rocks for physical property simulation and microstructural response analysis.However,fractures in CT images are similar in grayscale to the rock matrix,and traditional algorithms have difficulty to achieve accurate segmentation results.In this study,a dataset containing multiscale fracture information was constructed,and a U-Net semantic segmentation model with a scSE attention mechanism was used to classify shale CT images at the pixel level and compare the results with traditional methods.The results showed that the CLAHE algorithm effectively removed noise and enhanced the fracture information in the dark parts,which is beneficial for further fracture extraction.The Canny edge detection algorithm had significant false positives and failed to recognize the internal information of the fractures.The Otsu algorithm only extracted fractures with a significant difference from the background and was not sensitive enough for fine fractures.The MEF algorithm enhanced the edge information of the fractures and was also sensitive to fine fractures,but it overestimated the aperture of the fractures.The U-Net was able to identify almost all fractures with good continuity,with an MIou and Recall of 0.80 and 0.82,respectively.As the image resolution increases,more fine fracture information can be extracted.展开更多
Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help ...Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.展开更多
To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces a...To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces acting on the shuttle-shaped cap-pile group model were measured considering both random waves and a combination of random waves with a current.The experimental results have shown that the wave-current forces can be well correlated with the wave height,the wavelength,the current velocity,the incident direction and the water level in the marine environment.An increase in the current velocity can lead to a sharp increase in the inline and transverse wave-current forces,while the vertical wave-current force decreases.Moreover,the wave-current forces are particularly strong when a combination of high tide,strong wave and strong current is considered.展开更多
The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NF...The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.展开更多
Objective: To investigate the effect of extracorporeal diaphragmatic pacing combined with noninvasive ventilators on the respiratory function and prognosis of chronic obstructive pulmonary disease (COPD) patients. Met...Objective: To investigate the effect of extracorporeal diaphragmatic pacing combined with noninvasive ventilators on the respiratory function and prognosis of chronic obstructive pulmonary disease (COPD) patients. Methods: A total of 50 COPD patients were selected between January 2023 to December 2023 and randomly grouped into an observation group and a control group, with 25 cases. The observation group was given extracorporeal diaphragm pacing combined with a noninvasive ventilator, while the control group was given a conventional treatment mode. After the treatment, the results of each index in the two groups were compared. Results: Compared with the diaphragm function indexes of the two groups, the data of the observation group were more dominant (P < 0.05). The rehospitalization rate of the observation group was lower than that of the control group (P < 0.05). The COPD assessment test (CAT) and mMRC (Modified Medical Research Council) Dyspnoea scale scores after treatment between the two groups were significantly different (P < 0.05). Compared with the control group, the lung function indexes of the observation group were more dominant (P < 0.05). Conclusion: Extracorporeal diaphragmatic pacing combined with a noninvasive ventilator promoted the improvement of the patient’s prognosis and improved their respiratory function.展开更多
This study comprehensively analyzes the status,characteristics,focal points,and evolving trends of global research on“stroke risk analysis”over the past four years(2020–2023),aiming to provide insights for directin...This study comprehensively analyzes the status,characteristics,focal points,and evolving trends of global research on“stroke risk analysis”over the past four years(2020–2023),aiming to provide insights for directing future research endeavors.By utilizing the Newcastle-Ottawa Scale,63 high-quality research papers were selected and subjected to a systematic literature review.In terms of research methods,stroke risk analysis research has evolved from clinical trials(e.g.,establishing control groups,using authoritative scales)towards statistical and data analysis methods(e.g.,decision tree analysis).Regarding research factors,early studies primarily focused on pathological factors associated with hemorrhagic and ischemic stroke,such as hypertension,hyperlipidemia,and diabetes.Recent research from the past two years indicates a shift towards emerging factors,including temperature conditions,air quality,and Corona Virus Disease 2019(COVID-19).In terms of application domains,stroke research covers a broad range of fields but mainly focuses on exploring risk factors,interventions during diagnosis and treatment stages,and rehabilitation,with clinical diagnosis,treatment,and drug intervention studies being predominant.While the research landscape is becoming increasingly diversified and comprehensive,there remains a need for more comprehensive and in-depth studies on novel topics,as well as integrated applications of research methods,presenting ample opportunities for exploring dependent variables in future stroke.展开更多
This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined ...This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined with optimized chemometric techniques, namely PCA. The detection method for down samples was established by using GC-IMS. Meanwhile, the reason of unpleasant odors caused by WDD was explained on the basis of the characteristic volatile compounds identification. GC-IMS fingerprinting can be considered a revolutionary approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. A total of 22 compounds were successfully separated and identified through GC-IMS method, and the significant differences in volatile compounds were observed in three parts of WDD and WGD samples. The most characteristic volatile compounds of WGD belong to aldehydes, whereas carboxylic acids from WDD were detected generated by autoxidation reaction. Meanwhile, the main reason of unpleasant odor generation was possibly attributed to the high concentration of volatile carboxylic acids of WDD. Therefore, the constructed model presents a simple and efficient method of analysis and serves as a basis for down processing and quality control.展开更多
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in...In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
基金supported by the National Natural Science Foundation of China (No. 82072914)the Special Foundation for Taishan Scholars and the Fundamental Research Funds for the Central Universities (No. 2022JC009)。
文摘Objective: Primary resistance to trastuzumab frequently occurs in human epidermal growth factor receptor 2(HER2)-positive(+) breast cancer patients and remains a clinical challenge. Pyrotinib is a novel tyrosine kinase inhibitor that has shown efficacy in the treatment of HER2+ breast cancer. However, the efficacy of pyrotinib in HER2+ breast cancer with primary trastuzumab resistance is unknown.Methods: HER2+ breast cancer cells sensitive or primarily resistant to trastuzumab were treated with trastuzumab, pyrotinib, or the combination. Cell proliferation, migration, invasion, and HER2 downstream signal pathways were analyzed. The effects of pyrotinib plus trastuzumab and pertuzumab plus trastuzumab were compared in breast cancer cells in vitro and a xenograft mouse model with primary resistance to trastuzumab.Results: Pyrotinib had a therapeutic effect on trastuzumab-sensitive HER2+ breast cancer cells by inhibiting phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT) and rat sarcoma virus(RAS)/rapidly accelerated fibrosarcoma(RAF)/mitogen-activated protein kinase(MAPK)/extracellular-signal regulated kinase(ERK)pathways. In primary trastuzumab-resistant cells, pyrotinib inhibited cell growth, migration, invasion, and HER2 downstream pathways, whereas trastuzumab had no effects. The combination with trastuzumab did not show increased effects compared with pyrotinib alone. Compared with pertuzumab plus trastuzumab, pyrotinib plus trastuzumab was more effective in inhibiting cell proliferation and HER2 downstream pathways in breast cancer cells and tumor growth in a trastuzumab-resistant HER2+ breast cancer xenograft model.Conclusions: Pyrotinib-containing treatments exhibited anti-cancer effects in HER2+ breast cancer cells sensitive and with primary resistance to trastuzumab. Notably, pyrotinib plus trastuzumab was more effective than trastuzumab plus pertuzumab in inhibiting tumor growth and HER2 downstream pathways in HER2+ breast cancer with primary resistance to trastuzumab. These findings support clinical testing of the therapeutic efficacy of dual anti-HER2 treatment combining an intracellular small molecule with an extracellular antibody.
基金supported by the fund from ShenyangMint Company Limited(No.20220056)Senior Talent Foundation of Jiangsu University(No.19JDG022)Taizhou City Double Innovation and Entrepreneurship Talent Program(No.Taizhou Human Resources Office[2022]No.22).
文摘In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.
基金supported by the National Natural Science Foundation of China(22101182)the Shenzhen Science and Technology Program(Nos.JCYJ20210324095202006,JCYJ20220531095813031,and JCYJ20230807140700001)Guangdong Basic and Applied Basic Research Foundation(2022A1515010318).
文摘Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO_(2)/CO concentration at the electrode.Building upon this approach,we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO_(2)RR to C_(2+)in a neutral electrolyte.Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules(HEB-CuO NPs),a remarkable C_(2+)Faradaic efficiency of nearly 90%was achieved at an unprecedented current density of 300 mA cm^(-2),and a high FE(>80%)was maintained at a wide range of current densities(100-600 mA cm^(-2))in neutral environments using a flow cell.Furthermore,in a membrane electrode assembly(MEA)electrolyzer,86.14%FEC2+was achieved at a partial current density of 387.6 mA cm^(-2)while maintaining continuous operation for over 50 h at a current density of 200 mA cm^(-2).In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants(CO)interacting with the surface,thereby promoting efficient C-C coupling and enhancing the yield of C_(2+)products.This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C_(2+)production.
基金supported by Ten Thousand Talent Program of Yunnan Province(Grant No.YNWR-QNBJ-2018-174)the Key Basic Research Program of Yunnan Province,China(Grant No.202101BC070003)+3 种基金National Natural Science Foundation of China(Grant No.31901237)Conservation Program for Plant Species with Extremely Small Populations in Yunnan Province(Grant No.2022SJ07X-03)Key Technologies Research for the Germplasmof Important Woody Flowers in Yunnan Province(Grant No.202302AE090018)Natural Science Foundation of Guizhou Province(Grant No.Qiankehejichu-ZK2021yiban 089&Qiankehejichu-ZK2023yiban 035)。
文摘Rhododendron is famous for its high ornamental value.However,the genus is taxonomically difficult and the relationships within Rhododendron remain unresolved.In addition,the origin of key morphological characters with high horticulture value need to be explored.Both problems largely hinder utilization of germplasm resources.Most studies attempted to disentangle the phylogeny of Rhododendron,but only used a few genomic markers and lacked large-scale sampling,resulting in low clade support and contradictory phylogenetic signals.Here,we used restriction-site associated DNA sequencing(RAD-seq)data and morphological traits for 144 species of Rhododendron,representing all subgenera and most sections and subsections of this species-rich genus,to decipher its intricate evolutionary history and reconstruct ancestral state.Our results revealed high resolutions at subgenera and section levels of Rhododendron based on RAD-seq data.Both optimal phylogenetic tree and split tree recovered five lineages among Rhododendron.Subg.Therorhodion(cladeⅠ)formed the basal lineage.Subg.Tsutsusi and Azaleastrum formed cladeⅡand had sister relationships.CladeⅢincluded all scaly rhododendron species.Subg.Pentanthera(cladeⅣ)formed a sister group to Subg.Hymenanthes(cladeⅤ).The results of ancestral state reconstruction showed that Rhododendron ancestor was a deciduous woody plant with terminal inflorescence,ten stamens,leaf blade without scales and broadly funnelform corolla with pink or purple color.This study shows significant distinguishability to resolve the evolutionary history of Rhododendron based on high clade support of phylogenetic tree constructed by RAD-seq data.It also provides an example to resolve discordant signals in phylogenetic trees and demonstrates the application feasibility of RAD-seq with large amounts of missing data in deciphering intricate evolutionary relationships.Additionally,the reconstructed ancestral state of six important characters provides insights into the innovation of key characters in Rhododendron.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
基金supported by the National Science Foundation under Grant No.CMMI-1762190The research was performed in part in the Nebraska Nanoscale Facility:National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience (and/or NERCF),which are supported by the National Science Foundation under Award ECCS:2025298+1 种基金the Nebraska Research Initiativesupported by the U.S.Department of Energy,Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment。
文摘W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.
基金supported by the National Key R&D Program of China(2022YFF1000100)Technology Application and Development Program for Rapid Propagation of Cow Breeding(20211117000005)+2 种基金Basic Science(Agricultural Biology)Research Center of Shaanxi(K3030922016)Ningxia Hui Autonomous Region Key R&D Projects(2021BEF01001)Natural Science Basic Research Program of Shaanxi(2022JQ-171)。
文摘The placenta plays a crucial role in successful mammalian reproduction.Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons,essential for full-term fetal development.The cow placenta harbors at least two trophoblast cell populations:uninucleate(UNC)and binucleate(BNC)cells.However,the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches,and the molecular mechanisms governing trophoblast differentiation and functionalization.To fill this knowledge gap,we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation,attaining high-resolution,spatially resolved gene expression profiles.Based on clustering and cell marker gene expression analyses,key transcription factors,including YBX1 and NPAS2,were shown to regulate the heterogeneity of trophoblast cell subpopulations.Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment.Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation.Additionally,spatial modules and co-variant genes that help shape specific tissue structures were identified.Together,these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.
基金funded by the National Natural Science Foundation of China and the Machinery Industry Innovation Platform Construction Project of China Machinery Industry Federation,Grant Numbers 52378103 and 2019SA-10-07.
文摘Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions.Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces.The turbulent Schmidt number(Sc_(t))concept has typically been used in this regard,and most studies have adopted a default value.We studied the concentration distribution for sulfur hexafluoride(SF_(6))assuming different emission rates and considering the effect of Sc_(t).Then we examined the same problem for a light gas by assuming hydrogen gas(H_(2))as the contaminant.When SF_(6) was considered as the contaminant gas,a variation in the emission rate completely changed the concentration distribution.When the emission rate was low,the gravitational effect did not take place.For both low and high emission rates,an increase in S_(ct) accelerated the transport rate of SF_(6).In contrast,for H_(2) as the contaminant gas,a larger S_(ct) could induce a decrease in the H_(2) transport rate.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金funded by the Natural Science Basis Research Plan in Shaanxi Province of China(No.2022JM-147).
文摘Accurate extraction of pores and fractures is a prerequisite for constructing digital rocks for physical property simulation and microstructural response analysis.However,fractures in CT images are similar in grayscale to the rock matrix,and traditional algorithms have difficulty to achieve accurate segmentation results.In this study,a dataset containing multiscale fracture information was constructed,and a U-Net semantic segmentation model with a scSE attention mechanism was used to classify shale CT images at the pixel level and compare the results with traditional methods.The results showed that the CLAHE algorithm effectively removed noise and enhanced the fracture information in the dark parts,which is beneficial for further fracture extraction.The Canny edge detection algorithm had significant false positives and failed to recognize the internal information of the fractures.The Otsu algorithm only extracted fractures with a significant difference from the background and was not sensitive enough for fine fractures.The MEF algorithm enhanced the edge information of the fractures and was also sensitive to fine fractures,but it overestimated the aperture of the fractures.The U-Net was able to identify almost all fractures with good continuity,with an MIou and Recall of 0.80 and 0.82,respectively.As the image resolution increases,more fine fracture information can be extracted.
文摘Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.
基金supported by the Major Special Science and Technology Project of“Ningbo Science and Technology Innovation 2025”(Grant No.2019B10076)Natural Science Foundation of Zhejiang Province(No.LY23E080001).
文摘To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces acting on the shuttle-shaped cap-pile group model were measured considering both random waves and a combination of random waves with a current.The experimental results have shown that the wave-current forces can be well correlated with the wave height,the wavelength,the current velocity,the incident direction and the water level in the marine environment.An increase in the current velocity can lead to a sharp increase in the inline and transverse wave-current forces,while the vertical wave-current force decreases.Moreover,the wave-current forces are particularly strong when a combination of high tide,strong wave and strong current is considered.
基金supported in part by the Fundamental Research Funds for the Central Universities(2572019BB03 and 2572021CG01)the Startup Fund and the Catalyst Fund from Rowan University and the Research Grant(PC 20-22)from the New Jersey Health Foundation from USAthe Grant(DMR-2116353)from the National Science Foundation.
文摘The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.
文摘Objective: To investigate the effect of extracorporeal diaphragmatic pacing combined with noninvasive ventilators on the respiratory function and prognosis of chronic obstructive pulmonary disease (COPD) patients. Methods: A total of 50 COPD patients were selected between January 2023 to December 2023 and randomly grouped into an observation group and a control group, with 25 cases. The observation group was given extracorporeal diaphragm pacing combined with a noninvasive ventilator, while the control group was given a conventional treatment mode. After the treatment, the results of each index in the two groups were compared. Results: Compared with the diaphragm function indexes of the two groups, the data of the observation group were more dominant (P < 0.05). The rehospitalization rate of the observation group was lower than that of the control group (P < 0.05). The COPD assessment test (CAT) and mMRC (Modified Medical Research Council) Dyspnoea scale scores after treatment between the two groups were significantly different (P < 0.05). Compared with the control group, the lung function indexes of the observation group were more dominant (P < 0.05). Conclusion: Extracorporeal diaphragmatic pacing combined with a noninvasive ventilator promoted the improvement of the patient’s prognosis and improved their respiratory function.
基金funded by 2020 National Social Science Fund(grant number:20BTQ073)The Special Fund for the“Community Medicine and Health Management Research Project”of the Shanghai Society of Integrated Traditional Chinese and Western Medicine(grant number:2023SQ19).
文摘This study comprehensively analyzes the status,characteristics,focal points,and evolving trends of global research on“stroke risk analysis”over the past four years(2020–2023),aiming to provide insights for directing future research endeavors.By utilizing the Newcastle-Ottawa Scale,63 high-quality research papers were selected and subjected to a systematic literature review.In terms of research methods,stroke risk analysis research has evolved from clinical trials(e.g.,establishing control groups,using authoritative scales)towards statistical and data analysis methods(e.g.,decision tree analysis).Regarding research factors,early studies primarily focused on pathological factors associated with hemorrhagic and ischemic stroke,such as hypertension,hyperlipidemia,and diabetes.Recent research from the past two years indicates a shift towards emerging factors,including temperature conditions,air quality,and Corona Virus Disease 2019(COVID-19).In terms of application domains,stroke research covers a broad range of fields but mainly focuses on exploring risk factors,interventions during diagnosis and treatment stages,and rehabilitation,with clinical diagnosis,treatment,and drug intervention studies being predominant.While the research landscape is becoming increasingly diversified and comprehensive,there remains a need for more comprehensive and in-depth studies on novel topics,as well as integrated applications of research methods,presenting ample opportunities for exploring dependent variables in future stroke.
文摘This work first describes a simple approach for the untargeted profiling of volatile compounds for distinguishing between white duck down (WDD) and white goose down (WGD) based on resolution-optimized GC-IMS combined with optimized chemometric techniques, namely PCA. The detection method for down samples was established by using GC-IMS. Meanwhile, the reason of unpleasant odors caused by WDD was explained on the basis of the characteristic volatile compounds identification. GC-IMS fingerprinting can be considered a revolutionary approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. A total of 22 compounds were successfully separated and identified through GC-IMS method, and the significant differences in volatile compounds were observed in three parts of WDD and WGD samples. The most characteristic volatile compounds of WGD belong to aldehydes, whereas carboxylic acids from WDD were detected generated by autoxidation reaction. Meanwhile, the main reason of unpleasant odor generation was possibly attributed to the high concentration of volatile carboxylic acids of WDD. Therefore, the constructed model presents a simple and efficient method of analysis and serves as a basis for down processing and quality control.
文摘In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.