期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Zn addition on microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr alloy
1
作者 fei-yu he Wen-xin Hu +2 位作者 Li-juan Liu Shao-bo Ma Wei He 《China Foundry》 SCIE CAS CSCD 2023年第4期299-306,共8页
The effect of 0.5wt.%Zn addition on the microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr(WE32)alloy was investigated.The results indicate that WE32-0.5Zn alloy takes 48 h to reach peak hardness after solid ... The effect of 0.5wt.%Zn addition on the microstructure and mechanical properties of Mg-3Y-2Nd-0.5Zr(WE32)alloy was investigated.The results indicate that WE32-0.5Zn alloy takes 48 h to reach peak hardness after solid solution treatment at 525℃and aging at 200℃,10 h earlier than WE32 alloy,which implies an accelerated aging precipitation kinetics owing to the addition of 0.5wt.%Zn.A large quantity of finerod and rectangular block-like Zn-Zr precipitates in theα-Mg matrix are formed in the WE32-0.5Zn alloy,and numerous needle-likeβ1phases are distributed at both ends of the Zn-Zr precipitates at peak-aged condition.In peak-aged condition,the ultimate tensile strength considerably increases from 263.2 MPa(WE32)to 309.6 MPa(WE32-0.5Zn),and the elongation dramatically increases from 4.3%(WE32)to 8.9%(WE32-0.5Zn).Theβ’andβ1phases are the main precipitates of the WE32-0.5Zn alloy peak-aged at 200℃.Theβ’andβ1phases easily nucleate at the Zn-Zr precipitates,and theβ1phases are particularly likely to nucleate and grow at the interface between the two ends of the Zn-Zr precipitates,which accelerates aging precipitation kinetics and leads to a shorter time to achieve peak aging. 展开更多
关键词 Mg-3Y-2Nd-0.5Zr Zn-Zr precipitates microstructure mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部