β-Ga_(2)O_(3) possesses a highly promising critical electric field of 8 MV/cm,allowing devices with improved perfor-mance compared with other wide bandgap materials[1,2].The 4-inch wafers grown from a melt and over 1...β-Ga_(2)O_(3) possesses a highly promising critical electric field of 8 MV/cm,allowing devices with improved perfor-mance compared with other wide bandgap materials[1,2].The 4-inch wafers grown from a melt and over 10μm of the epitax-ial layers grown by Halide vapor phase epitaxy(HVPE)with highly controllable doping concentration,are commercially available,paving the way of vertical power devices.Theβ-Ga_(2)O_(3) community has consistently elevated the average criti-cal electric field superior to SiC or GaN,which is suitable for medium/high voltage infrastructures demanding over 900 V[1].Verticalβ-Ga_(2)O_(3) power electronics have made a tremendous progress in recent years,such as various surface/interface engineering,diverse edge termination,quasi-inversion vertical transistor,etc.展开更多
文摘β-Ga_(2)O_(3) possesses a highly promising critical electric field of 8 MV/cm,allowing devices with improved perfor-mance compared with other wide bandgap materials[1,2].The 4-inch wafers grown from a melt and over 10μm of the epitax-ial layers grown by Halide vapor phase epitaxy(HVPE)with highly controllable doping concentration,are commercially available,paving the way of vertical power devices.Theβ-Ga_(2)O_(3) community has consistently elevated the average criti-cal electric field superior to SiC or GaN,which is suitable for medium/high voltage infrastructures demanding over 900 V[1].Verticalβ-Ga_(2)O_(3) power electronics have made a tremendous progress in recent years,such as various surface/interface engineering,diverse edge termination,quasi-inversion vertical transistor,etc.