期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide
1
作者 Zhenxing Liu Fangjie Deng +6 位作者 Yuan Zhou Yanjie Liang Cong Peng Bing Peng feiping zhao Zhihui Yang Liyuan Chai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期662-670,共9页
Cubic boron arsenide(BAs)has attracted great attention due to its high thermal conductivity,however,its controllable,stable,and ideal preparation remains challenging.Herein,we investigated the effect of iodine-contain... Cubic boron arsenide(BAs)has attracted great attention due to its high thermal conductivity,however,its controllable,stable,and ideal preparation remains challenging.Herein,we investigated the effect of iodine-containing transport agents I_(2) and boron triiodide(BI_(3))on BAs synthesized and grown through chemical vapor transport.Results show that similar to the commonly used I_(2),BI_(3) accelerates the synthesis and improves the mass fraction of BAs from ~12% to over 90% at 820℃ and 1.5 MPa,a value beyond the promoting effect of only increasing temperature and pressure.Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%-20%.I_(2) agglomerates the grown crystals with twin defects(~50 nm wide),and BI_(3) improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins(~15 nm wide)and increases the stoichiometry ratio(~0.990)to almost 1.Owing to the boron interstitials from the excessive boron supply,the spacing of layers in {111} increases to 0.286 nm in the presence of I_(2).Owing to its coordinated effect,BI_(3) only slightly influences the layer spacing at 0.275 nm,which is close to the theoretical value of 0.276 nm.In the chemical vapor transport,the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI_(3).Different from that of I_(2),the coordinated effect of BI_(3) can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs. 展开更多
关键词 boron arsenide transport agent boron-arsenic reaction IODINE boron triiodide
下载PDF
Ferrihydrite transformation impacted by coprecipitation of lignin:Inhibition or facilitation?
2
作者 Lin Liu Zhihui Yang +4 位作者 Weichun Yang Wen Jiang Qi Liao Mengying Si feiping zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Lignin is a common soil organic matter that is present in soils,but its effect on the transformation of ferrihydrite(Fh)remains unclear.Organic matter is generally assumed to inhibit Fh transformation.However,lignin c... Lignin is a common soil organic matter that is present in soils,but its effect on the transformation of ferrihydrite(Fh)remains unclear.Organic matter is generally assumed to inhibit Fh transformation.However,lignin can reduce Fh to Fe(Ⅱ),in which Fe(Ⅱ)-catalyzed Fh transformation occurs.Herein,the effects of lignin on Fh transformation were investigated at 75℃ as a function of the lignin/Fh mass ratio(0-0.2),pH(4-8)and aging time(0-96 hr).The results of Fh-lignin samples(mass ratios=0.1)aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh,and the Fe(Ⅱ)-accelerated transformation of Fh was strongly dependent on pH.Under pH 6,at low lignin/Fh mass ratios(0.05-0.1),the time of secondary mineral formation decreased with increasing lignin content.For high lignosulfonate-content material(lignin:Fh=0.2),Fh did not transform into secondary minerals,indicating that lignin content plays a major role in Fh transformation.In addition,lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation.The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment. 展开更多
关键词 Ferrihydrite transformation LIGNIN HEMATITE GOETHITE Fe(Ⅱ)-catalyzed Reactive Fe(Ⅲ)species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部