Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for...Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for the inlet-diffuser system,pri-mary/secondaryflow interaction,and pressure feedback matching,was developed for operating characteristics studies and multi-objective optimization analysis of the ejector mode of an actual RBCC engine.A series of three-dimensional simulations of separate inlet and fullflowpath was completed to validate the modeling study and provide further insight into the operating charac-teristics.The primary/secondary equilibrium pressure ratio functions a significant effect on ejector mode performance,a higher performance augmentation can be obtained by lower rocket pressure ratio,larger mixing section area ratio,smaller throttling throat and higher equivalence ratio,within an appropriate range.The positive performance augmentation can be realized at lowflight Mach conditions,the coordination and trade-off relationships between specific im-pulse,performance augmentation ratio and thrust-to-area ratio during ejector mode are present by the Pareto-front from MOP analysis.It is further verified by CFD simulation that,the operating back-pressure at the exit of inlet-diffuser system functions a decisive influence on the airbreathing characteristics,the pressure feedback and matching should be well-controlled for secondaryflowrate and performance augmentation.The thermodynamic modeling analysis re-sults are basically consistent with those of numerical simulation,to validate the rationality and effectiveness of the modeling method.展开更多
Experimental studies were conducted in order to improve the understanding of the thrust generation and the pressure/flame reverse propagation of the air-breathing pulse detonation engines(APDEs)with self-designed inle...Experimental studies were conducted in order to improve the understanding of the thrust generation and the pressure/flame reverse propagation of the air-breathing pulse detonation engines(APDEs)with self-designed inlets and valves structures.The present experimental research utilized a gasoline/air APDE(with 68 mm inner-diameter,2050 mm length and maximum operating frequency not less than 40 Hz which was as a benchmark structure)at different operating frequencies,with freestream air inflow of 1.1 atm and 0℃.The theoretical equivalence ratio of gasoline/air was 1.Two kinds of inlets with centerbody or without were considered and combined with two kinds of self-designed valves(the elastic-valve and the convergent aero-valve)specially designed for comparative experiments.During the test,the inflow parameters,the pressure along the longitudinal direction inside the engine and the thrust force were measured for the APDE operating characteristic analysis,including the detonation combustion,the aerodynamic drag,the pressure/flame reverse propagation and the thrust generation.The research results indicate that:The inlet centerbody does not increase drag but plays a positive effect on airflow stability and operation matching.The elastic-valve and the convergent aero-valve,though increase the inlet aerodynamic drag,have obvious effects on suppressing the detonation wave and pressure forward propagation,resulting in effective thrust increase.Effects of the convergent aero-valve are the best when the flow choked,while the effects of elastic-valve are better and continuously stable in a wider range of frequency.The wmaximum nondimensional thrust increases with the elastic-valve is reached about 1.12 at the frequency of 8-9 Hz,and about 0.97 with the convergent aero-valve at the frequency of 7 Hz.The maximum fuel specific impulse is 2514.6 s when using the convergent aerovalve.And this study provides technical reserve for the APDE optimization design.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52076094).
文摘Ejector mode is a unique and critical phase of wide-range rocket-based combined cycle(RBCC)engine.In this paper,a quasi-one-dimensional thermodynamic performance modeling method,with more detailed model treatments for the inlet-diffuser system,pri-mary/secondaryflow interaction,and pressure feedback matching,was developed for operating characteristics studies and multi-objective optimization analysis of the ejector mode of an actual RBCC engine.A series of three-dimensional simulations of separate inlet and fullflowpath was completed to validate the modeling study and provide further insight into the operating charac-teristics.The primary/secondary equilibrium pressure ratio functions a significant effect on ejector mode performance,a higher performance augmentation can be obtained by lower rocket pressure ratio,larger mixing section area ratio,smaller throttling throat and higher equivalence ratio,within an appropriate range.The positive performance augmentation can be realized at lowflight Mach conditions,the coordination and trade-off relationships between specific im-pulse,performance augmentation ratio and thrust-to-area ratio during ejector mode are present by the Pareto-front from MOP analysis.It is further verified by CFD simulation that,the operating back-pressure at the exit of inlet-diffuser system functions a decisive influence on the airbreathing characteristics,the pressure feedback and matching should be well-controlled for secondaryflowrate and performance augmentation.The thermodynamic modeling analysis re-sults are basically consistent with those of numerical simulation,to validate the rationality and effectiveness of the modeling method.
基金the National Natural Science Foundation of China(91441201)the Fundamental Research Funds for the Central Universities(5003123003)for financial supports of this work.
文摘Experimental studies were conducted in order to improve the understanding of the thrust generation and the pressure/flame reverse propagation of the air-breathing pulse detonation engines(APDEs)with self-designed inlets and valves structures.The present experimental research utilized a gasoline/air APDE(with 68 mm inner-diameter,2050 mm length and maximum operating frequency not less than 40 Hz which was as a benchmark structure)at different operating frequencies,with freestream air inflow of 1.1 atm and 0℃.The theoretical equivalence ratio of gasoline/air was 1.Two kinds of inlets with centerbody or without were considered and combined with two kinds of self-designed valves(the elastic-valve and the convergent aero-valve)specially designed for comparative experiments.During the test,the inflow parameters,the pressure along the longitudinal direction inside the engine and the thrust force were measured for the APDE operating characteristic analysis,including the detonation combustion,the aerodynamic drag,the pressure/flame reverse propagation and the thrust generation.The research results indicate that:The inlet centerbody does not increase drag but plays a positive effect on airflow stability and operation matching.The elastic-valve and the convergent aero-valve,though increase the inlet aerodynamic drag,have obvious effects on suppressing the detonation wave and pressure forward propagation,resulting in effective thrust increase.Effects of the convergent aero-valve are the best when the flow choked,while the effects of elastic-valve are better and continuously stable in a wider range of frequency.The wmaximum nondimensional thrust increases with the elastic-valve is reached about 1.12 at the frequency of 8-9 Hz,and about 0.97 with the convergent aero-valve at the frequency of 7 Hz.The maximum fuel specific impulse is 2514.6 s when using the convergent aerovalve.And this study provides technical reserve for the APDE optimization design.