Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an...Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.展开更多
To study the composition, affecting factors of the stable hydrogen isotopes of alkane gases and their application to identification of the natural gas origin and maturities, the chemical and isotopic compositions of 1...To study the composition, affecting factors of the stable hydrogen isotopes of alkane gases and their application to identification of the natural gas origin and maturities, the chemical and isotopic compositions of 118 gas samples of Carboniferous- Permian in the Ordos Basin, and of Triassic in the Sichuan Basin, combined with 68 gas samples from the Sinian and Cambrian reservoirs in the Sichuan Basin, and Ordovician and Siliurian reservoirs of Tarim Basin, are analyzed comprehensively. The following conclusions are obtained:(1) Natural gases in the study area and strata of the Ordos and Sichuan basins are dominated by alkane gases, and the dryness coefficients and maturities of the Carboniferous-Permian gases in the Ordos Basin are higher than the gases in the Triassic Xujiahe Formation of the Sichuan Basin, while the hydrogen isotopes of the latter ones are much enriched in 2H than the former.(2) The δ2HCH4-C1/C2+3 genetic identification diagram of natural gas was drawn, and the diagrams of hydrogen isotopic differences between the heavy alkane gases and methane vs. hydrogen isotopes of alkane gases can also be used in natural gas genetic identification.(3) The δ2HCH4-Ro formulas of coal-formed gas in different areas of the two basins are given, and the δ2HC2H6-δ2HCH4 is a new index for maturity, and the (δ2HC2H6-δ2HCH4)-Ro formula of the coal-formed gas can be used to calculate the maturity of the natural gas.(4) The stable hydrogen isotopes of alkane gases are affected by parent materials in source rocks, maturity, mixing and the aqueous medium conditions, among which the aqueous paleo-salinity is the key factor. To sum up, the hydrogen isotopes of alkane gases are affected by multiple factors, and they are significant to the identification of the origin, and maturity of natural gas, and the water environment during the deposition of source rocks.展开更多
基金sponsored by the Science Research and Technology Development Project of Petrochina Company Limited "Well Logging Interpretation and Integrative Evaluation of the Complex Lithology"(Grant No.2008A-2705)
文摘Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-001)
文摘To study the composition, affecting factors of the stable hydrogen isotopes of alkane gases and their application to identification of the natural gas origin and maturities, the chemical and isotopic compositions of 118 gas samples of Carboniferous- Permian in the Ordos Basin, and of Triassic in the Sichuan Basin, combined with 68 gas samples from the Sinian and Cambrian reservoirs in the Sichuan Basin, and Ordovician and Siliurian reservoirs of Tarim Basin, are analyzed comprehensively. The following conclusions are obtained:(1) Natural gases in the study area and strata of the Ordos and Sichuan basins are dominated by alkane gases, and the dryness coefficients and maturities of the Carboniferous-Permian gases in the Ordos Basin are higher than the gases in the Triassic Xujiahe Formation of the Sichuan Basin, while the hydrogen isotopes of the latter ones are much enriched in 2H than the former.(2) The δ2HCH4-C1/C2+3 genetic identification diagram of natural gas was drawn, and the diagrams of hydrogen isotopic differences between the heavy alkane gases and methane vs. hydrogen isotopes of alkane gases can also be used in natural gas genetic identification.(3) The δ2HCH4-Ro formulas of coal-formed gas in different areas of the two basins are given, and the δ2HC2H6-δ2HCH4 is a new index for maturity, and the (δ2HC2H6-δ2HCH4)-Ro formula of the coal-formed gas can be used to calculate the maturity of the natural gas.(4) The stable hydrogen isotopes of alkane gases are affected by parent materials in source rocks, maturity, mixing and the aqueous medium conditions, among which the aqueous paleo-salinity is the key factor. To sum up, the hydrogen isotopes of alkane gases are affected by multiple factors, and they are significant to the identification of the origin, and maturity of natural gas, and the water environment during the deposition of source rocks.