期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue 被引量:7
1
作者 feng-mei bai Hong-Wei Zhou +4 位作者 Xiang-Hua Liu Meng Song Ya-Xin Sun Hai-Long Yi Zhen-Yi Huang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第11期1346-1354,共9页
Low cycle fatigue behavior of a quenched and tempered high-strength steel(Q960 E) was studied in the strain amplitude ranging from ± 0.5% to ± 1.2% at room temperature. As a result of fatigue loading, the di... Low cycle fatigue behavior of a quenched and tempered high-strength steel(Q960 E) was studied in the strain amplitude ranging from ± 0.5% to ± 1.2% at room temperature. As a result of fatigue loading, the dislocation structural evolution and fracture mechanism were examined and studied by transmission electron microscopy and scanning electron microscopy(SEM). The results showed that this Q960 E steel showed cyclic softening at different strain amplitudes, and the softening tendency was more apparent at strain amplitude of ±(0.6–1.2)% than that at ± 0.5%. The reduction in dislocation density with increasing strain amplitude is responsible for the softening tendency of cyclic stress with the strain amplitude. The material illustrates near-Masing behavior at strain amplitude ranging from ± 0.6% to ± 1.2%. The near-Masing behavior of Q960 E high-strength steel can be the result of stability of martensite lath at different strain amplitudes. Partial transformation from martensite laths to dislocation cells is responsible for the derivation from ideal Masing behavior. In the SEM examination of fracture surfaces, transgranular cracks initiate on the sample surface. Striations can be found during the crack propagation stage. 展开更多
关键词 HIGH-STRENGTH steel Low CYCLE FATIGUE Near-Masing BEHAVIOR MARTENSITE lath
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部