期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MicroRNA-101a-3p mimic ameliorates spinal cord ischemia/reperfusion injury 被引量:3
1
作者 Zai-Li Zhang Dan Wang feng-shou chen 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2022-2028,共7页
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases,but its role in spinal cord ischemia/reperfusion injury remains unclear.In this study,we established a rat model... miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases,but its role in spinal cord ischemia/reperfusion injury remains unclear.In this study,we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours.Results showed that miR-101a-3p expression in L4-L6 spinal cord was greatly decreased,whereas MYCN expression was greatly increased.Dual-luciferase reporter assay results showed that miR-101a-3p targeted MYCN.MYCN immunoreactivity,which was primarily colocalized with neurons in L4-L6 spinal tissue,greatly increased after spinal cord ischemia/reperfusion injury.However,intrathecal injection of an miR-101a-3p mimic within 24 hours before injury decreased MYCN,p53,caspase-9 and interleukin-1βexpression,reduced p53 immunoreactivity,reduced the number of MYCN/NeuN-positive cells and the number of necrotic cells in L4-L6 spinal tissue,and increased Tarlov scores.These findings suggest that the miR-101a-3p mimic improved spinal ischemia/reperfusion injury-induced nerve cell apoptosis and inflammation by inhibiting MYCN and the p53 signaling pathway.Therefore,miR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury. 展开更多
关键词 apoptosis CASPASE-9 INFLAMMATION INTERLEUKIN-1Β microRNA-101a-3p MYCN nerve cells p53 spinal cord ischemia/reperfusion injury
下载PDF
The roles of microRNAs in spinal cord ischemia-reperfusion injury 被引量:2
2
作者 feng-shou chen Xiang-Yi Tong +3 位作者 Bo Fang Dan Wang Xiao-Qian Li Zai-Li Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2593-2599,共7页
Spinal cord ischemia/reperfusion injury is a devastating medical disorder with poor prognosis that is associated with several pathophysiological conditions.However,multiple stimuli can trigger SCII,so the underlying m... Spinal cord ischemia/reperfusion injury is a devastating medical disorder with poor prognosis that is associated with several pathophysiological conditions.However,multiple stimuli can trigger SCII,so the underlying mechanism of this pathology has not yet been fully established.MicroRNAs(miRNAs)are a class of non-coding RNAs that mediate a variety of nervous system diseases and regulate numerous physiological functions,including apoptosis,autophagy,inflammation,and blood-spinal cord barrier damage.miRNA expression profiles are known to be altered after spinal cord ischemia/reperfusion injury.Therefore,gaining a better understanding of the significant roles that miRNAs play in spinal cord ischemia/reperfusion injury could help develop potential preventive and therapeutic strategies for spinal cord ischemia/reperfusion injury.This review summarizes the current state of our knowledge about the relationship between miRNAs and spinal cord ischemia/reperfusion injury,as well as potential miRNAs that could be targeted to treat spinal cord ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS AUTOPHAGY blood-spinal cord barrier INFLAMMATION MICRORNAS PATHOPHYSIOLOGY review spinal cord ischemia-reperfusion injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部