Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,cons...Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.展开更多
The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration m...The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment.A highest power factor of 228.88μW·m;·K;was obtained at 331 K for the cold-pressed rGO/Ag;Se NW composite film with 0.01 wt%r GO.The rGO/Ag;Se NW composite film revealed superior flexibility as the power factor retained 94.62%after bending for 500 times with a bending radius of 4 mm,which might be due to the interwoven network structures of Ag;Se NWs and pliability of r GO as well as nylon membrane.These results demonstrated that the GO/Ag;Se NW composite film has a potential for preparation of flexible thermoelectric devices.展开更多
Flexible electrochromic(EC) materials have an urgent demand in the current electronic equipment market due to their technological interest and applications. However, at present, few flexible EC devices developed by in...Flexible electrochromic(EC) materials have an urgent demand in the current electronic equipment market due to their technological interest and applications. However, at present, few flexible EC devices developed by industry exist due to some problems and challenges still to be solved such as flexibility. In this work, we have successfully synthesized a novel thiophene-furan(TFu) monomer via Stille coupling reaction,and facilely electrochemically polymerized in a neutral Bu_4 NPF_6-CH_2Cl2 electrolyte system to afford the corresponding poly(thiophene-furan)(PTFu) polymer film with good flexibility. The electrochemical and photoelectrochemical analyses of the as-prepared PTFu demonstrate that it has achieved the improved EC performance compared with pure polyfuran and polythiophene polymers, and as a result it possesses favorable EC parameters manifested as a reasonable ΔT(32.1%), faster response(1.38 s), excellent coloration efficiency(CE, 300.9 cm^(2)·C^(-1)), and after a continuous redox process up to 2000 s, its optical stability can be maintained at 96%, and even after 3000 s, it can still be maintained at 80%. In addition, the successful assembly of the electrochromic device of PTFu film can easily realize the reversible conversion of the color from orange to gray. All these systematic studies suggest that the as-prepared flexible PTFu film is a promising candidate for EC materials and has great potential interest for versatile EC applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51762018,52073128,and 22065013)the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20202ACBL204005,20202ACBL214005,and 20203AEI003)。
文摘Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.
基金supported by the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(Grant No.TP2020068)Shanghai Innovation Action Plan Project(Grant No.17090503600)Shanghai Sailing Program(Grant No.20YF1447300)。
文摘The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment.A highest power factor of 228.88μW·m;·K;was obtained at 331 K for the cold-pressed rGO/Ag;Se NW composite film with 0.01 wt%r GO.The rGO/Ag;Se NW composite film revealed superior flexibility as the power factor retained 94.62%after bending for 500 times with a bending radius of 4 mm,which might be due to the interwoven network structures of Ag;Se NWs and pliability of r GO as well as nylon membrane.These results demonstrated that the GO/Ag;Se NW composite film has a potential for preparation of flexible thermoelectric devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 51762018 and 51863009)the Natural Science Foundation of Jiangxi Province (Nos.20165BCB18016, 20181ACB20010, and 20202ACBL204005)Jiangxi Provincial Department of Education (Nos. GJJ190584and GJJ190612)。
文摘Flexible electrochromic(EC) materials have an urgent demand in the current electronic equipment market due to their technological interest and applications. However, at present, few flexible EC devices developed by industry exist due to some problems and challenges still to be solved such as flexibility. In this work, we have successfully synthesized a novel thiophene-furan(TFu) monomer via Stille coupling reaction,and facilely electrochemically polymerized in a neutral Bu_4 NPF_6-CH_2Cl2 electrolyte system to afford the corresponding poly(thiophene-furan)(PTFu) polymer film with good flexibility. The electrochemical and photoelectrochemical analyses of the as-prepared PTFu demonstrate that it has achieved the improved EC performance compared with pure polyfuran and polythiophene polymers, and as a result it possesses favorable EC parameters manifested as a reasonable ΔT(32.1%), faster response(1.38 s), excellent coloration efficiency(CE, 300.9 cm^(2)·C^(-1)), and after a continuous redox process up to 2000 s, its optical stability can be maintained at 96%, and even after 3000 s, it can still be maintained at 80%. In addition, the successful assembly of the electrochromic device of PTFu film can easily realize the reversible conversion of the color from orange to gray. All these systematic studies suggest that the as-prepared flexible PTFu film is a promising candidate for EC materials and has great potential interest for versatile EC applications.