This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses r...This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses reveal that significant increas- ing trends in temperature were observed over Xinjiang, with the rate of 0.13 ~C/decade, 0.24 ~C/decade, and 0.52 ~C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual fi'equency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rap- idly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in tempera- ture means in Xinjiang.展开更多
In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in...In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.展开更多
China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much...China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.展开更多
基金funded by a special scientific research project (GYHY200706008) in the public welfare industry (meteorology)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciencesthe National Natural Science Foundation(41171066) of Xinjiang Institute of Ecology and Geography
文摘This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses reveal that significant increas- ing trends in temperature were observed over Xinjiang, with the rate of 0.13 ~C/decade, 0.24 ~C/decade, and 0.52 ~C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual fi'equency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rap- idly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in tempera- ture means in Xinjiang.
基金funded by Henan Province Office of education of Humanities and social science research projects (2014-qn-151)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciences+3 种基金the special scientific research project (GYHY200706008)the project of National Social Science Foundation (14CJY077)Science and Technology Department of Henan Province key scientific and technological project (142102310299)the National Natural Science Foundation (41171066) of Xinjiang Institute of Ecology and Geography
文摘In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.
基金the Ministry of Science and Technology(Grant No.2018FY100502)the Young Talent Growth Fund Project of Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences(Grant No.FEYS2019016)+2 种基金the National Natural Science Foundation of China(Grant No.41171378)the“Western Light”program of the Chinese Academy of Science(Grant No.2017-XBQNXZ-B-016)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019430)。
文摘China’s Northwest Arid Region(NAR),with dry and cold climate conditions and glaciers widely developed in the high mountains,provides vital water resources for Asia.The consecutive cold,warm,dry and wet days have much higher impacts on the water cycle process in this region than extreme temperature and precipitation events with short durations but high intensities.Parametric and nonparametric trend analysis methods widely used in climatology and hydrology are employed to identify the temporal and spatial features of the changes in the consecutive cold,warm,dry and wet days in the NAR based on China’s 0.5°×0.5°meteorological grid datasets of daily temperature and precipitation from 1961 to 2018.This study found that(1)the consecutive cold days(Cold Spell Duration Indicator,CSDI),and the consecutive dry days(CDD)decreased,while the consecutive warm days(Warm Spell Duration Indicator,WSDI),and the consecutive wet days(CWD)increased from 1961 to 2018,(2)and the eastern Kunlun Mountains were the hot spots where all of these consecutive climate indices changed significantly,(3)and the changes in these consecutive climate indices were highly correlated with the rise in the Global Mean Land/Ocean Temperature Index.The results indicated that winters tended to warmer and dryer and summer became hotter and wetter during 1961–2018 in the NAR under the global warming,which can lead to the sustained glacier retreat and the increase in summer runoff in this region,and the eastern Kunlun Mountains are the area where could face high risks of water scarcity and floods if the changes in these climate indices continue in the future.Given the vulnerability of the socio-economic systems in the NAR to a water shortage and floods,it is most crucial to improve the strategies of water resources management,disaster prevention and risk management for this region under climate change.