期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
1
作者 Jie Cheng Jiahao Xu +4 位作者 Yinjie Xiang Shengli Liu fengfeng chi Bin Li Peng Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期229-234,共6页
The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the sign... The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the significant enhancement of terahertz(THz)PSHE by taking advantage of the optical Tamm state(OTS)in In Sb-distributed Bragg reflector(DBR)structure.The spin shift of reflected light can be dynamically tuned by the structural parameters(e.g.the thickness)of the InSb-DBR structure as well as the temperature,and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm.Moreover,we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×10^(4)mm/RIU and good stability.This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on In Sb-supported THz long-range surface plasmon resonance.These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices. 展开更多
关键词 photonic spin Hall effect optical Tamm state INSB gas sensor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部